

LabJack UE9 User’s Guide
(Also Covers UE9-Pro)

Revision 1.11

September 18th, 2008

LabJack Corporation
www.labjack.com

support@labjack.com

mailto:support@labjack.com

For the latest version of this and other documents, go to www.labjack.com.

LabJack designs and manufactures measurement and automation peripherals that enable the
connection of a PC to the real world. Although LabJacks have various redundant protection
mechanisms, it is possible, in the case of improper and/or unreasonable use, to damage the
LabJack and even the PC to which it is connected. LabJack Corporation will not be liable for
any such damage.

Except as specified herein, LabJack Corporation makes no warranties, express or implied,
including but not limited to any implied warranty or merchantability or fitness for a particular
purpose. LabJack Corporation shall not be liable for any special, indirect, incidental or
consequential damages or losses, including loss of data, arising from any cause or theory.

LabJacks and associated products are not designed to be a critical component in life support or
systems where malfunction can reasonably be expected to result in personal injury. Customers
using these products in such applications do so at their own risk and agree to fully indemnify
LabJack Corporation for any damages resulting from such applications.

LabJack assumes no liability for applications assistance or customer product design.
Customers are responsible for their applications using LabJack products. To minimize the risks
associated with customer applications, customers should provide adequate design and
operating safeguards.

Reproduction of products or written or electronic information from LabJack Corporation is
prohibited without permission. Reproduction of any of these with alteration is an unfair and
deceptive business practice.

Copyright © 2008, LabJack Corporation

Declaration of Conformity

Manufacturers Name: LabJack Corporation
Manufacturers Address: 3232 S Vance St STE 100, Lakewood, CO 80227, USA

Declares that the product

Product Name: LabJack UE9
Model Number: LJUE9

conforms to the following Product Specifications:

EMC Directive: 89/336/EEC

EN 55011 Class A
EN 61326-1: General Requirements

and is marked with CE

 2

http://www.labjack.com/

Warranty:

The LabJack UE9 comes with a 1 year limited warranty from LabJack Corporation, covering this
product and parts against defects in material or workmanship. The LabJack can be damaged
by misconnection (such as connecting 120 VAC to any of the screw terminals), and this
warranty does not cover damage obviously caused by the customer. If you have a problem,
contact support@labjack.com for return authorization. In the case of warranty repairs, the
customer is responsible for shipping to LabJack Corporation, and LabJack Corporation will pay
for the return shipping.

LabJack UE9 User’s Guide Revision History:

V1.10 released Feb 12th, 2008
Major changes to entire document.

V1.11 released September 18th, 2008
Section 2.14 – New Section about optional pin-header connectors for OEMs.
Section 3.2 – Updated Table 3-5 for Comm/Control firmware V1.40/1.84.
Section 4.3.7 – More detail about stream buffers.
Section 4.3.11 – More information about pin numbers and pull-up resistors.
Section 5.3.12 – Clarified EraseArea bytes.
Section 5.5 – New Section about Modbus.

 3

Table Of Contents

1. Installation on Windows ...8

1.1 Control Panel Application (LJControlPanel) ...9
1.2 Self-Upgrade Application (LJSelfUpgrade)...11

2. Hardware Description...12
2.1 USB ..12
2.2 Ethernet ..14
2.3 Vext (Screw Terminals and Power Jack)..14
2.4 Comm and Control LEDs..15
2.5 GND and SGND ...15
2.6 Vs ...16
2.7 AIN..16

2.7.1 Channel Numbers ..16
2.7.2 Converting Binary Readings to Voltages ...19
2.7.3 Typical Analog Input Connections ...21
2.7.4 Internal Temperature Sensor ...27

2.8 DAC..27
2.8.1 Typical Analog Output Connections..28

2.9 Digital I/O..29
2.9.1 Typical Digital I/O Connections...30

2.10 Timers/Counters ...34
2.10.1 Timer Mode Descriptions ..36
2.10.2 Timer Operation/Performance Notes ..40

2.11 SCL and SDA (or SCA) ..40
2.12 DB37...40

2.12.1 CB37 Terminal Board ...41
2.12.2 EB37 Experiment Board ...41

2.13 DB15...41
2.13.1 CB15 Terminal Board ...42
2.13.2 RB12 Relay Board ..42

2.14 OEM Connector Options ..42
3. Operation ...44

3.1 Command/Response..44
3.2 Stream Mode..45

3.2.1 External Triggering..47
3.2.2 Streaming Digital Inputs, Timers, and Counter0 ...48

4. LabJackUD High-Level Driver..50
4.1 Overview...50

4.1.1 Function Flexibility ...51
4.1.2 Multi-Threaded Operation ..52

4.2 Function Reference ..54
4.2.1 ListAll() ...54
4.2.2 OpenLabJack() ..55
4.2.3 eGet() and ePut() ...56
4.2.4 eAddGoGet()..57
4.2.5 AddRequest()...57
4.2.6 Go()..58
4.2.7 GoOne() ...59
4.2.8 GetResult()...59
4.2.9 GetFirstResult() and GetNextResult()..60
4.2.10 DoubleToStringAddress() ..61
4.2.11 StringToDoubleAddress() ..61
4.2.12 StringToConstant()...62

 4

4.2.13 ErrorToString() ...62
4.2.14 GetDriverVersion() ...63
4.2.15 TCVoltsToTemp() ..63
4.2.16 ResetLabJack()..63
4.2.17 eAIN()...64
4.2.18 eDAC() ...64
4.2.19 eDI() ...65
4.2.20 eDO() ...65
4.2.21 eTCConfig() ...66
4.2.22 eTCValues()...67

4.3 Example Pseudocode...68
4.3.1 Open ...68
4.3.2 Configuration...68
4.3.3 Analog Inputs ..69
4.3.4 Analog Outputs ...70
4.3.5 Digital I/O ..70
4.3.6 Timers & Counters ..71
4.3.7 Stream Mode ..74
4.3.8 Raw Output/Input ..78
4.3.9 Easy Functions ...78
4.3.10 SPI Serial Communication ..79
4.3.11 I2C Serial Communication...80
4.3.12 Asynchronous Serial Communication ...82
4.3.13 Watchdog Timer..83
4.3.13 Miscellaneous ...84

4.4 Errorcodes..86
5. Low-Level Function Reference ..89

5.1 General Protocol...89
5.2 Comm Functions ..92

5.2.1 CommConfig ..92
5.2.2 FlushBuffer...94
5.2.3 DiscoveryUDP..95

5.3 Control Functions ...96
5.3.1 BadChecksum..96
5.3.2 ControlConfig ...97
5.3.3 Feedback (and FeedbackAlt)...99
5.3.4 SingleIO ...102
5.3.5 TimerCounter ...104
5.3.6 StreamConfig ...107
5.3.7 StreamStart..109
5.3.8 StreamData..110
5.3.9 StreamStop..112
5.3.10 ReadMem ..113
5.3.11 WriteMem...114
5.3.12 EraseMem..115
5.3.13 WatchdogConfig ..116
5.3.14 WatchdogRead ..119
5.3.15 Reset..120
5.3.16 SPI ...121
5.3.17 AsynchConfig...123
5.3.18 AsynchTX...124
5.3.19 AsynchRX ..125
5.3.20 I2C ...126
5.3.21 SHT1X ...128

 5

5.4 Low-Level Errorcodes...129
5.5 Modbus...130

A. Specifications...131
B. Noise & Resolution Tables ..134
C. Enclosure & PCB Drawings...135
C. Enclosure & PCB Drawings...136

 6

Table Of Tables & Figures

Figure 1-1. LJControlPanel Main Window..9
Figure 1-2. LJControlPanel Test Window ..10
Figure 1-3. LJControlPanel Settings Window ..10
Figure 1-4. Self-Upgrade Application ...11
Figure 2-1. LabJack UE9 ...12
Table 2-1. Internal Channels..17
Figure 2-2. Typical External Multiplexer Connections..18
Table 2-2. Expanded Channel Mapping...19
Table 2-3. Nominal Analog Input Voltage Ranges ...19
Table 2-4. Calibration Constant Memory Locations ...20
Table 2-5. Fixed Point Conversion Examples ..21
Figure 2-3. Non-Inverting Op-Amp Configuration ..23
Figure 2-4. Voltage Divider Circuit ...24
Figure 2-5. Buffered Voltage Divider Circuit...25
Figure 2-6. Current Measurement With Arbitrary Load or 2-Wire 4-20 mA Sensor26
Figure 2-7. Current Measurement With 3-Wire 4-20 mA (Sourcing) Sensor26
Figure 2-8. ±10 Volt DAC Output Circuit..29
Figure 2-9. Driven Signal Connection To Digital Input ...31
Figure 2-10. Open-Collector (NPN) Connection To Digital Input ...31
Figure 2-11. Basic Mechanical Switch Connection To Digital Input...32
Figure 2-12. Passive Hardware Debounce ..33
Figure 2-13. Relay Connections (Sinking Control, High-Side Load Switching)..........................33
Table 3-1. Typical Feedback Function Execution Times ...44
Table 3-2. Typical SingleIO Function Execution Times For Analog Input (UE9-Pro).................45
Table 3-3. Typical TimerCounter Function Execution Times ...45
Table 3-4. Recommended Maximum Stream Data Rates ...46
Table 3-5. Actual Maximum Stream Data Rates (Resolution=12) ...46
Table 3-6. Special Stream Channels ...48
Table 4-1. Request Level Error Codes (Part 1)..86
Table 4-2. Request Level Error Codes (Part 2)..87
Table 4-3. Group Level Error Codes ..88

 7

1. Installation on Windows
The LJUD driver requires a PC running Windows 98, ME, 2000, XP, or Vista. For other
operating systems, go to labjack.com for available support. Software will be installed to the
LabJack directory which defaults to c:\Program Files\LabJack\.

Install the software first: Install the software using the CD or by downloading the latest UD
installer from labjack.com. Although all necessary software is available at labjack.com, do not
discard the CD as it includes a fully licensed copy of DAQFactory Express which is not available
by download.

Connect the USB cable: (See Section 2.2 for Ethernet installation tips) The USB cable
provides data and power. After the UD software installation is complete, connect the hardware
and Windows should prompt with “Found New Hardware” and shortly after the Found New
Hardware Wizard will open. When the Wizard appears allow Windows to install automatically
by accepting all defaults.

Run LJControlPanel: From the Windows Start Menu, go to the LabJack group and run
LJControlPanel. Click the “Find Devices” button, and an entry should appear for the connected
UE9 showing the serial number. Click on the “USB – 1” entry below the serial number to bring
up the UE9 configuration panel. Click on “Test” in the configuration panel to bring up the test
panel where you can view and control the various I/O on the UE9.

If LJControlPanel does not find the UE9, check Windows Device Manager to see if the UE9
installed correctly. One way to get to the Device Manager is:

Start => Control Panel => System => Hardware => Device Manager

The entry for the UE9 should appear as in the following figure. If it has a yellow caution symbol
or exclamation point symbol, right-click and select “Uninstall” or “Remove”. Then disconnect
and reconnect the UE9 and repeat the Found New Hardware Wizard as described above.

 8

1.1 Control Panel Application (LJControlPanel)
The LabJack Control Panel application (LJCP.exe) handles configuration and testing of the
UE9. Click on the “Find LabJacks” button to search for connected devices.

Figure 1-1. LJControlPanel Main Window

Figure 1-1 shows the results from a typical search. The application found one UE9 connected
by USB and Ethernet. It also found a second UE9 that is accessible only by Ethernet. The USB
connection has been selected in Figure 1-1, bringing up the configuration window on the right
side.

• Refresh: Reload the window using values read from the device.
• Write to Device: Write the values from the window to the device. Depending on the

values that have been changed, the application might prompt for a device reset.
• Reset: Click to reset the selected device.
• Test: Opens the window shown in Figure 1-2. This window continuously writes to and

reads from the selected LabJack.

 9

Figure 1-2. LJControlPanel Test Window

Selecting Options=>Settings from the main LJControlPanel menu brings up the window shown
in Figure 1-3. This window allows some features to of the LJControlPanel application to be
customized.

Figure 1-3. LJControlPanel Settings Window

 10

• Search for USB devices: If selected, LJControlPanel will include USB when searching
for devices.

• Search for Ethernet devices using UDP broadcast packet: Normally, Ethernet
connected devices are found using a broadcast of the DiscoveryUDP command
documented in Section 5.2.3. On some networks, however, it might not be desirable to
broadcast these UDP packets. There are also situations where a network might have
proper TCP communication between the PC and LabJack, but the broadcast UDP
packet does not work.

• Search for Ethernet devices using specified IP addresses. When this option is selected,
LJControlPanel will specifically search over TCP using each address in the list. On
some networks this might be preferred over the UDP broadcast search.

1.2 Self-Upgrade Application (LJSelfUpgrade)
Both processors in the UE9 have field upgradeable flash memory. The self-upgrade application
shown in Figure 1-4 programs the latest firmware onto either processor.

First, put valid values in the “Connect by” box. If USB, select first found or specify a local ID. If
Ethernet, specify the IP Address. These values will be used for programming and everything
else.

Click on “Get Version Numbers”, to find out the current firmware versions on the device. Then
use the provided Internet link to go to labjack.com and check for more recent firmware.
Download firmware files to the …\LabJack\LJSelfUpgrade\upgradefiles\ directory.

Click the Browse button and select the upgrade file to program. Based on the file name, the
application will determine whether the Comm or Control processor is to be programmed.

Click the Program button to begin the self-upgrade process.

Figure 1-4. Self-Upgrade Application

 11

2. Hardware Description
The UE9 has 3 different I/O areas:

• Communication Edge,
• Screw Terminal Edge,
• DB Edge.

The communication edge has a USB type B connector (with black cable connected in Figure 2-
1), a 10Base-T Ethernet connector (with yellow cable connected in Figure 2-1), and two entry
points for external power (screw-terminals or power jack).

The screw terminal edge has convenient connections for 4 analog inputs, both analog outputs,
and 4 flexible digital I/O (FIO). The screw terminals are arranged in blocks of 4, with each block
consisting of Vs, GND, and two I/O. Also on this edge are two LEDs associated with the two
processors in the UE9.

The DB Edge has 2 D-sub type connectors: a DB37 and DB15. The DB37 has some digital I/O
and all the analog I/O. The DB15 has 12 additional digital I/O.

Figure 2-1. LabJack UE9

2.1 USB
For information about USB installation, see Section 1.

The UE9 has a full-speed USB connection compatible with USB version 1.1 or 2.0. This
connection can provide communication and power (Vusb), but it is possible that some USB
ports will not be able to provide enough power to run the UE9 at all speeds. Certain low power
USB ports can be limited to 100 milliamps, and some power modes of the UE9 use more than
100 milliamps. A USB hub with a power supply (self-powered) will always provide 500
milliamps for each port.

 12

USB ground is connected to the UE9 ground, and USB ground is generally the same as the
ground of the PC chassis and AC mains. In this case, the UE9 is not electrically isolated when
the USB cable is connected.

The details of the UE9 USB interface are handled by the high level drivers (Windows
LabJackUD DLL), so the following information is really only needed when developing low-level
drivers.

The LabJack vendor ID is 0x0CD5. The product ID for the U3 is 0x0009.

The USB interface consists of the normal bidirectional control endpoint 0 and two bidirectional
bulk endpoints: Endpoint 1 and Endpoint 2. Endpoint 1 consists of a 16 byte OUT endpoint
(address = 0x01) and a 16 byte IN endpoint (address 0x81). Endpoint 2 consists of a 64 byte
OUT endpoint (address = 0x02) and a 64 byte IN endpoint (address = 0x82).

Commands can be sent on either endpoint, and the response will be sent on the same endpoint,
except that stream data is always transferred on IN Endpoint 2, regardless of whether the
stream start command was sent on OUT Endpoint 1 or 2.

Commands can be sent on both endpoints at the same time, but as with any connection on the
UE9, do not send a second command on an endpoint until after receiving the response to the
first command.

Except for reading stream data, always write and read the actual number of bytes in the
command and response. If the size is not an even multiple of the endpoint size a short packet
will be transferred. In general, small transfers will be faster on Endpoint 1 and large transfers
will be faster on Endpoint 2, but the time differences are small if any, and it is normal to do all
communication besides reading stream data on Endpoint 1. The main reason for the different
endpoints is to simplify calling command/response functions while a stream is in progress.

USB stream data is a special case where each 46-byte data packet is padded with 2 zeros on
the end (not part of the protocol), and then 4 of these 48-byte blocks are grouped together and
sent in 3 transfers over the 64-byte endpoint. The host will generally read stream data over
USB in multiples of 192 bytes (64 samples). This means that at low scan rates there could be a
long time between reads and latency will be high, but this can be improved by oversampling.

The USB transceiver on the UE9 has a 128 byte hardware buffer on Endpoint 2. If the UE9
stream data buffer has one or more StreamData packets available, they are moved to the USB
buffer to await a read by the host. Once placed in this USB buffer, the data cannot be removed
(e.g. by a FlushBuffer command). To avoid confusion on future communication on Endpoint 2,
this buffer should always be emptied after streaming.

One way to empty this buffer is to continue reading data after StreamStop, until there is no more
(the read times out). This should not require a long timeout as the data is not being acquired,
but simply waiting to be retrieved from the UE9 FIFO buffer.

Another option is to follow the StreamStop command with a FlushBuffer command. Then just
try to read the last 128 bytes that could still be in the USB buffer.

A third option is to do a StreamStop (and a FlushBuffer if desired), and then do not attempt to
empty the USB buffer, but always discard the first two StreamData packets after StreamStart.

 13

2.2 Ethernet
The UE9 has a 10Base-T Ethernet connection. This connection only provides communication,
so power must be provided by an external power supply or USB connection.

The Ethernet connection on the UE9 has 1500 volts of galvanic isolation. As long as the USB
cable is not connected, the overall isolation level of the UE9 will be determined by the power
supply. All power supplies shipped by LabJack Corporation with the UE9 have at least 500
volts of isolation.

See a note about power-over-Ethernet (POE) in Section 2.3.

The UE9 has a 10Base-T Ethernet connection. This connection only provides communication,
so power must be provided by an external power supply or USB connection. The UE9 ships
with an Ethernet patch cable that would normally be used to connect to a hub or switch. A
direct connection from the UE9 to a computer might require a crossover cable (not included),
but often the network interface card (NIC) on modern computers is capable of automatically
detecting the signal orientation and will work with either cable type (patch or crossover).

The LEDs on a switch/hub/NIC can be used to determine if you have an electrically valid
connection. An orange LED is often used to indicate a good 10Base-T connection, but consult
the manual for the switch/nub/NIC to be sure. In the case of a direct connection between PC
and UE9, if Windows says “A network cable is unplugged” or similar, it suggests that the UE9 is
not powered or the wrong type of cable is connected.

Complex networks might require the assistance of your network administrator to use the UE9,
but the following information is often sufficient for basic networks.

One basic requirement for TCP communication is that the UE9’s IP address must be part of the
subnet and not already used. Open a command prompt window and type “ipconfig” to see a
listing of the IP address and subnet mask for a particular PC. If the PC shows a subnet mask of
255.255.255.0, that means it can only talk to devices with the same first 3 bytes of the IP
address. The default IP address of the UE9 is 192.168.1.209, which will generally work on a
network using the 192.168.1.* subnet (unless another device is already using the .209 address).
If the IP address of the UE9 needs to be changed, the easiest way is via USB with the
LJControlPanel application.

LJControlPanel and Ping (open a command prompt window and type “ping 192.168.1.209”) are
useful utilities for testing basic Ethernet communication. It is a good idea to attempt to Ping the
desired IP address before connecting the UE9, to see if anything is already using that address.
A more extensive Ethernet troubleshooting utility called UE9ethertest is available at
www.labjack.com/files/utilities . See the file readme.txt in the UE9ethertest.zip archive.

2.3 Vext (Screw Terminals and Power Jack)
There are two connections for an external power supply (Vext): a two-pole screw terminal or a
2.1 mm center-positive power jack. These connections are electrically the same, so generally
only one is used at a time.

The nominal power supply voltage for the UE9 is 5 volts. Power can be provided from the USB
connection (Vusb) or an external power supply (Vext). The UE9 has an internal semiconductor
switch that automatically selects between Vusb and Vext. Both power sources can be
connected at the same time, and either can be connected/disconnected at any time. As long as

 14

http://www.labjack.com/files/utilities

one supply remains valid, the UE9 will operate normally. If both Vusb and Vext are connected
and valid, the internal switch will select Vext.

The UE9 power supply requirement is nominally 5 volts at <200 mA (see Appendix A). This is
generally provided by a wall-wart or wall-transformer type of supply. A supply capable of 500
mA is recommended. The power jack connector is 2.1 x 5.5 mm, center positive. A linear
(regulated) or switching supply is acceptable. Switching supplies are generally noisier than
linears, but the UE9 is not particularly sensitive to power supply noise, and most users will not
notice any difference.

Another interesting option is a power-over-Ethernet (POE) adapter. The UE9 does not support
POE itself, but there are POE adapters that split out the data and power in such a manner that
is acceptable for the UE9. These adapters consist of an injector and splitter, and a single
Ethernet cable carries data and power between the two. LabJack Corporation has done testing
with the WAPPOE unit from Linksys, which is an off-the-shelf POE adapter with the proper
connections for a UE9.

2.4 Comm and Control LEDs
There is a yellow LED associated with the Comm (communication) processor, and a green LED
associated with the Control processor.

The Comm LED flashes on reset and USB enumeration, and then only turns on when there is
communication (USB/Ethernet) traffic. This LED then turns off if there is no communication for
about 200 ms.

The Control LED normally blinks continuously at about 2.5 Hz. In flash programming mode it
blinks at about 8 Hz. If the LED is blinking at about 0.5 Hz, that signifies the depreciated (no
longer supported) low power mode. Those blink rates apply when the UE9 is idle, as this LED
also flashes on Control processor activity.

Normal Power-Up LED Behavior: When the USB cable is connected to the UE9 (no other
connections at all and no software running), both LEDs will start blinking. The Comm LED will
blink a few times and then turn off. The Control LED will continue to blink continuously.

2.5 GND and SGND
The GND connections available at the screw-terminals and DB connectors provide a common
ground for all LabJack functions. This ground is the same as the ground line on the USB
connection, which is often the same as ground on the PC chassis and therefore AC mains
ground. This ground is also the same as the ground on either Vext connections (wall-wart
power jack or minus screw terminals), but if an isolated supply is used, such as the one included
with the UE9, there is no common connection to AC mains ground.

SGND is located near the upper-left of the device. This terminal has a self-resetting thermal
fuse in series with GND. This is often a good terminal to use when connecting the ground from
another separately powered system that could unknowingly already share a common ground
with the UE9.

The UE9 has separate ground planes on the PCB for analog and digital, but the planes are
shorted together so the user only has to consider one common ground (GND).

See the AIN, DAC, and Digital I/O Sections for more information about grounding.

 15

2.6 Vs
The Vs terminals are designed as outputs for the internal supply voltage (nominally 5 volts).
This will be the voltage provided from the USB connection (Vusb) or an external power supply
(Vext) as described in Section 2.3. The Vs connections are outputs, not inputs. Do not connect
a power source to Vs. All Vs terminals are the same.

2.7 AIN
The LabJack UE9 has 14 user accessible analog inputs built-in. All the analog inputs are
available on the DB37 connector, and the first 4 are also available on the built-in screw
terminals.

The analog inputs have variable resolution, where the time required per sample increases with
increasing resolution. The value passed for resolution is from 0-17, where 0-12 all correspond
to 12-bit resolution, and 17 still results in 16-bit resolution but with minimum noise. The UE9-
Pro has an additional resolution setting of 18 that causes acquisitions to use the alternate high-
resolution converter (24-bit sigma-delta). Resolution is configured on a device basis, not for
each channel.

The analog inputs are connected to a high impedance input buffer. The inputs are not pulled to
0.0 volts, as that would reduce the input impedance, so readings obtained from floating
channels will generally not be 0.0 volts. The readings from floating channels depend on
adjacent channels and sample rate. See Section 2.7.3.8.

When scanning multiple channels, the nominal channel-to-channel delay is specified in
Appendix A, and includes enough settling time to meet the specified performance. Some signal
sources could benefit from increased settling, so a settling time parameter is available that adds
extra delay between configuring the multiplexers and acquiring a sample. The passed settling
time value is multiplied by 5 microseconds to get the approximate extra delay. This extra delay
will impact the maximum possible data rates.

2.7.1 Channel Numbers
The LabJack UE9 has 16 total built-in analog inputs. Two of these are connected internally
(AIN14/AIN15), leaving 14 user accessible analog inputs (AIN0-AIN13). The first 4 analog
inputs, AIN0-AIN3, appear both on the screw terminals and on the DB37 connector. These
connections are electrically the same, and the user must exercise caution only to use one
connection or the other, and not create a short circuit.

Following is a table showing the channel number to pass to acquire different readings from the
internal channels (AIN14/15).

 16

Channel#
14 Vref (~2.43 V)
128 Vref (~2.43 V)
132 Vsupply
133 Temp Sensor
15 GND
136 GND
140 Vsupply
141 Temp Sensor

Table 2-1. Internal Channels

GND and Vref connect 0.0 volts and about 2.43 volts to the internal channels. These signals
come through the same input path as channels 0-13, and thus can be used to test various
things.

Vsupply connects the 5 volt supply voltage (Vs) directly to the analog to digital converter
through a voltage divider that attenuates it by 40%. The attenuation of this voltage divider is not
measured during the UE9 factory calibration, but the accuracy should typically be within 0.2%.
Note that a reading from this channel returns Vs during the execution of the command, and Vs
might dip slightly while increasing a command due to the increased current draw of the UE9,
thus this reading might be slightly lower than a comparative reading from an external DMM
which averages over a longer time.

The channels with the same names are identical. For instance, channel 133 or 141 both read
the same internal temperature sensor. See Section 2.7.4 for information about the internal
temperature sensor.

The DB37 connector has 3 MIO lines designed to address expansion multiplexer ICs (integrated
circuits), allowing for up to 112 total external analog inputs. The MAX4051A (maxim-ic.com) is
a recommended multiplexer, and a convenient ±5.8 volt power supply is available so the
multiplexers can pass bipolar signals (see Vm+/Vm- discussion in Section 2.12). Note that the
EB37 experiment board accessory is a convenient way to connect up to 7 MAX4051A
multiplexer chips, but the UE9s ±5.8 volt supply should still be used to power the chips as the
±10 volt supply on the EB37 is beyond the rating of the MAX4051A. Figure 2-2 shows the
typical connections for a pair of multiplexers.

 17

Figure 2-2. Typical External Multiplexer Connections

To make use of external multiplexers, the user must be comfortable reading a simple schematic
(such as Figure 2-2) and making basic connections on a solderless breadboard (such as the
EB37). Initially, it is recommended to test the basic operation of the multiplexers without the
MIO lines connected. Simply connect different voltages to NO0 and NO1, connect
ADDA/ADDB/ADDC to GND, and the NO0 voltage should appear on COM. Then connect
ADDA to VS and the NO1 voltage should appear on COM.

If any of the AIN channel numbers passed to a UE9 function are in the range 16-127 (extended
channels), the MIO lines will automatically be set to output and the correct state while sampling
that channel. For instance, a channel number of 28 will cause the MIO to be set to b100 and
the ADC will sample AIN1. Channel number besides 16-127 will have no affect on the MIO.
The extended channel number mapping is shown in Table 2-2.

In command/response mode, after sampling an extended channel the MIO lines remain in that
same condition until commanded differently by another extended channel or another function.
When streaming with any extended channels, the MIO lines are all set to output-low for any non
extended analog channels. For special channels (digital/timers/counters), the MIO are driven to
unspecified states. Note that the StopStream can occur during any sample within a scan, so the
MIO lines will wind up configured for any of the extended channels in the scan. If a stream does
not have any extended channels, the MIO lines are not affected.

 18

UE9 MIO Multiplexed
Channel Channels

0 16-23
1 24-31
2 32-39
3 40-47
4 48-55
5 56-63
6 64-71
7 72-79
8 80-87
9 88-95
10 96-103
11 104-111
12 112-119
13 120-127
14 128-135
15 136-143

Table 2-2. Expanded Channel Mapping

2.7.2 Converting Binary Readings to Voltages
Following are the nominal input voltage ranges for the analog inputs.

Gain Max V Min V
Unipolar 1 5.07 -0.01
Unipolar 2 2.53 -0.01
Unipolar 4 1.26 -0.01
Unipolar 8 0.62 -0.01
Bipolar 1 5.07 -5.18

Table 2-3. Nominal Analog Input Voltage Ranges

The readings returned by the analog inputs are raw binary values (low level functions). An
approximate voltage conversion can be performed as:

Volts(uncalibrated) = (Bits/65536)*Span

Where span is the maximum voltage minus the minimum voltage from the table above. For a
proper voltage conversion, though, use the calibration values (Slope and Offset) stored in the
internal flash on the Control processor.

Volts = (Slope * Bits) + Offset

In both cases, “Bits” is always aligned to 16-bits, so if the raw binary value is 24-bit data it must
be divided by 256 before converting to voltage.

Since the UE9 uses multiplexers, all channels (except 129-135 and 137-143) have the same
calibration for a given input range.

 19

The readings from channel numbers 14/128 and 15/136 (Vref and GND), come through the
normal input signal conditioning and thus the binary to voltage calculation is the same as AIN0-
AIN13. The other internal readings (129-135 and 137-143) have a signal path outside the
normal multiplexers, and thus have different calibration constants.

Table 2-4 shows where the various calibration values are stored in the Mem area. Generally
when communication is initiated with the UE9, three calls will be made to the ReadMem function
to retrieve the first 3 blocks of memory. This information can then be used to convert all analog
input readings to voltages. The high level Windows DLL does this automatically.

Table 2-4. Calibration Constant Memory Locations

Each value in Table 2.4 is stored in 64-bit fixed point format (signed 32.32, little endian, 2’s
complement). Following are some examples of fixed point byte arrays and the associated
floating point double values.

Starting
Block # Byte Normal ADC Nominal Value

0 0 Slope, Unipolar G=1 7.7503E-05 volts/bit
0 8 Offset, Unipolar G=1 -1.2000E-02 volts
0 16 Slope, Unipolar G=2 3.8736E-05 volts/bit
0 24 Offset, Unipolar G=2 -1.2000E-02 volts
0 32 Slope, Unipolar G=4 1.9353E-05 volts/bit
0 40 Offset, Unipolar G=4 -1.2000E-02 volts
0 48 Slope, Unipolar G=8 9.6764E-06 volts/bit
0 56 Offset, Unipolar G=8 -1.2000E-02 volts
1 0 Slope, Bipolar G=1 1.5629E-04 volts/bit
1 8 Offset, Bipolar G=1 -5.1760E+00 volts

Starting

Block # Byte Miscellaneous Nominal Value
2 0 Slope, DAC0 8.4259E+02 bits/volt
2 8 Offset, DAC0 0.0000E+00 bits
2 16 Slope, DAC1 8.4259E+02 bits/volt
2 24 Offset, DAC1 0.0000E+00 bits
2 32 Slope, Temp (133/141) 1.2968E-02 degK/bit
2 48 Slope, Temp (133/141, Low) 1.2968E-02 degK/bit
2 64 Cal Temp 2.9815E+02 degK
2 72 Vref 2.4300E+00 volts
2 80 Reserved
2 88 Vref/2 (129/137) 1.2150E+00 volts
2 96 Slope, Vs (132/140) 9.2720E-05 volts/bit

Starting
Byte Hi-Res ADC (UE9-Pro) Nominal ValueBlock #

3 0 Slope, Unipolar G=1 7.7503E-05 volts/bit
3 8 Offset, Unipolar G=1 -1.2000E-02 volts
4 0 Slope, Bipolar G=1 1.5629E-04 volts/bit
4 8 Offset, Bipolar G=1 -5.1760E+00 volts

 20

Fixed Point Byte Array
(LSB, …, MSB) Floating Point Double
{0,0,0,0,0,0,0,0} 0.0000000000
{0,0,0,0,1,0,0,0} 1.0000000000

{0,0,0,0,255,255,255,255} -1.0000000000
{51,51,51,51,0,0,0,0} 0.2000000000

{205,204,204,204,255,255,255,255} -0.2000000000
{73,20,5,0,0,0,0,0} 0.0000775030

{225,122,20,110,2,0,0,0} 2.4300000000
{102,102,102,38,42,1,0,0} 298.1500000000

Table 2-5. Fixed Point Conversion Examples

2.7.3 Typical Analog Input Connections
A common question is “can this sensor/signal be measured with the UE9”. Unless the signal
has a voltage (referred to UE9 ground) beyond the limits in Appendix A, it can be connected
without damaging the UE9, but more thought is required to determine what is necessary to
make useful measurements with the UE9 or any measurement device.

Voltage (versus ground): The analog inputs on the UE9 measure a voltage with respect to UE9
ground. When measuring parameters other than voltage, or voltages too big or too small for the
UE9, some sort of sensor or transducer is required to produce the proper voltage signal.
Examples are a temperature sensor, amplifier, resistive voltage divider, or perhaps a
combination of such things.

Impedance: When connecting the UE9, or any measuring device, to a signal source, it must be
considered what impact the measuring device will have on the signal. The main consideration
is whether the currents going into or out of the UE9 analog input will cause noticeable voltage
errors due to the impedance of the source. See Appendix A for the recommended maximum
source impedance.

Resolution (and Accuracy): Based on the selected input range and resolution of the UE9, the
resolution can be determined in terms of voltage or engineering units. For example, assume
some temperature sensor provides a 0-10 mV signal, corresponding to 0-100 degrees C.
Samples are then acquired with the UE9 using the 0-5 volt input range and 16-bit resolution,
resulting in a voltage resolution of about 5/65536 = 76 μV. That means there will be about 131
discrete steps across the 10 mV span of the signal, and the overall resolution is 0.76 degrees C.
If this experiment required a resolution of 0.1 degrees C, this configuration would not be
sufficient. Accuracy will also need to be considered. Appendix A places some boundaries on
expected accuracy, but an in-system calibration can generally be done to provide absolute
accuracy down to the INL limits of the UE9.

Speed: How fast does the signal need to be sampled? For instance, if the signal is a
waveform, what information is needed: peak, average, RMS, shape, frequency, … ? Answers
to these questions will help decide how many points are needed per waveform cycle, and thus
what sampling rate is required. In the case of multiple channels, the scan rate is also
considered. See Sections 3.1 and 3.2.

2.7.3.1 Signal from the LabJack
Each analog input on the UE9 measures the difference in voltage between that input and
ground (GND). Since all I/O on the UE9 share a common ground, the voltage on a digital output

 21

or analog output can be measured by simply connecting a single wire from that terminal to an
AINx terminal.

2.7.3.2 Unpowered isolated signal
An example of an unpowered isolated signal would be a thermocouple or photocell where the
sensor leads are not shorted to any external voltages. Such a sensor typically has two leads.
The positive lead connects to an AINx terminal and the negative lead connects to a GND
terminal.

An exception might be a thermocouple housed in a metal probe where the negative lead of the
thermocouple is shorted to the metal probe housing. If this probe is put in contact with
something (engine block, pipe, …) that is connected to ground or some other external voltage,
care needs to be taken to insure valid measurements and prevent damage.

2.7.3.3 Signal powered by the LabJack
A typical example of this type of signal is a 3-wire temperature sensor. The sensor has a power
and ground wire that connect to Vs and GND on the LabJack, and then has a signal wire that
simply connects to an AINx terminal.

Another variation is a 4-wire sensor where there are two signal wires (positive and negative)
rather than one. If the negative signal is the same as power ground, or can be shorted ground,
then the positive signal can be connected to AINx and a measurement can be made. A typical
example where this does not work is a bridge type sensor, such as pressure sensor, providing
the raw bridge output (and no amplifier). In this case the signal voltage is the difference
between the positive and negative signal, and the negative signal cannot be shorted to ground.
An instrumentation amplifier is required to convert the differential signal to signal-ended, and
probably also to amplify the signal.

2.7.3.4 Signal powered externally
An example is a box with a wire coming out that is defined as a 0-5 volt analog signal and a
second wire labeled as ground. The signal is known to have 0-5 volts compared to the ground
wire, but the complication is what is the voltage of the box ground compared to the LabJack
ground.

If the box is known to be electrically isolated from the LabJack, the box ground can simply be
connected to LabJack GND. An example would be if the box was plastic, powered by an
internal battery, and does not have any wires besides the signal and ground which are
connected to AINx and GND on the LabJack. Such a case is obviously isolated and easy to
keep isolated. In practical applications, though, signals thought to be isolated are often not at
all, or perhaps are isolated at some time but the isolation is easily lost at another time.

If the box ground is known to be the same as the LabJack GND, then perhaps only the one
signal wire needs to be connected to the LabJack, but it generally does not hurt to go ahead
and connect the ground wire to LabJack GND with a 100 Ω resistor. You definitely do not want
to connect the grounds without a resistor.

If little is known about the box ground, a DMM can be used to measure the voltage of box
ground compared to LabJack GND. As long as an extreme voltage is not measured, it is
generally OK to connect the box ground to LabJack GND, but it is a good idea to put in a 100 Ω
series resistor to prevent large currents from flowing on the ground. Use a small wattage

 22

resistor (typically 1/8 or 1/4 watt) so that it blows if too much current does flow. The only
current that should flow on the ground is the return of the analog input bias current, which is on
the order of nanoamps for the UE9.

The SGND terminal can be used instead of GND for externally powered signals. A series
resistor is not needed as SGND is fused to prevent overcurrent, but a resistor will eliminate
confusion that can be caused if the fuse is tripping and resetting.

In general, if there is uncertainty, a good approach is to use a DMM to measure the voltage on
each signal/ground wire without any connections to the UE9. If no large voltages are noted,
connect the ground to UE9 SGND with a 100 Ω series resistor. Then again use the DMM to
measure the voltage of each signal wire before connecting to the UE9.

Another good general rule is to use the minimum number of ground connections. For instance,
if connecting 8 sensors powered by the same external supply, or otherwise referred to the same
external ground, only a single ground connection is needed to the UE9. Perhaps the ground
leads from the 8 sensors would be twisted together, and then a single wire would be connected
to a 100 Ω resistor which is connected to UE9 ground.

2.7.3.5 Amplifying small signal voltages
The best results are generally obtained when a signal voltage spans the full analog input range
of the LabJack. If the signal is too small it can be amplified before connecting to the LabJack.
One good way to handle low-level signals such as thermocouples is the LJTick-InAmp, which is
a 2-channel instrumentation amplifier module that plugs into the UE9 screw-terminals. Go to
labjack.com for more information.

For a do-it-yourself solution, the following figure shows an operational amplifier (op-amp)
configured as non-inverting:

Figure 2-3. Non-Inverting Op-Amp Configuration

The gain of this configuration is:

Vout = Vin * (1 + (R2/R1))

100 kΩ is a typical value for R2. Note that if R2=0 (short-circuit) and R1=inf (not installed), a
simple buffer with a gain equal to 1 is the result.

 23

There are numerous criteria used to choose an op-amp from the thousands that are available.
One of the main criteria is that the op-amp can handle the input and output signal range. Often,
a single-supply rail-to-rail input and output (RIRO) is used as it can be powered from Vs and
GND and pass signals within the range 0-Vs. The OPA344 from Texas Instruments (ti.com) is
good for many 5 volt applications. The max supply rating for the OPA344 is 5.5 volts, so for
applications using Vm+/Vm- (~12 volts) or using the ±10 volt supply on the EB37, the LT1490A
from Linear Technologies (linear.com) might be a good option.

The op-amp is used to amplify (and buffer) a signal that is referred to the same ground as the
LabJack (single-ended). If instead the signal is differential (i.e. there is a positive and negative
signal both of which are different than ground), an instrumentation amplifier (in-amp) should be
used. An in-amp converts a differential signal to single-ended, and generally has a simple
method to set gain.

The EB37 experiment board is handy for building these circuits.

2.7.3.6 Signal voltages beyond ±5 volts (and resistance measurement)
The nominal maximum analog input voltage range for the UE9 is ±5 volts. The easiest way to
handle larger voltages is often by using the LJTick-Divider, which is a two channel buffered
divider module that plugs into the UE9 screw-terminals. More information is available at
labjack.com.

The basic way to handle higher voltages is with a resistive voltage divider. The following figure
shows the resistive voltage divider assuming that the source voltage (Vin) is referred to the
same ground as the UE9 (GND).

Figure 2-4. Voltage Divider Circuit

The attenuation of this circuit is determined by the equation:

Vout = Vin * (R2 / (R1+R2))

This divider is easily implemented by putting a resistor (R1) in series with the signal wire, and
placing a second resistor (R2) from the AIN terminal to a GND terminal. To maintain specified
analog input performance, R1 should not exceed 10 kΩ, so R1 can generally be fixed at 10 kΩ
and R2 can be adjusted for the desired attenuation. For instance, R1 = R2 = 10 kΩ provides a
divide by 2, so a ±10 volt input will be scaled to ±5 volts and a 0-10 volt input will be scaled to 0-
5 volts.

The divide by 2 configuration where R1 = R2 = 10 kΩ, presents a 20 kΩ load to the source,
meaning that a ±10 volt signal will have to be able to source/sink up to ±500 µA. Some signal
sources might require a load with higher resistance, in which case a buffer should be used. The

 24

following figure shows a resistive voltage divider followed by an op-amp configured as non-
inverting unity-gain (i.e. a buffer).

Figure 2-5. Buffered Voltage Divider Circuit

The op-amp is chosen to have low input bias currents so that large resistors can be used in the
voltage divider. The LT1490A from Linear Technologies (linear.com) is a good choice for dual-
supply applications. The LT1490A only draws 40 µA of supply current, thus many of these
amps can be powered from the Vm+/Vm- supply on the UE9, and can pass signals in the ±5
volt range. Since the input bias current is only -1 nA, large divider resistors such as R1 = R2 =
470 kΩ will only cause an offset of about -470 µV, and yet present a load to the source of about
1 megaohm.

For 0-5 volt applications, where the amp will be powered from Vs and GND, the LT1490A is not
the best choice. When the amplifier input voltage is within 800 mV of the positive supply, the
bias current jumps from -1 nA to +25 nA, which with R1 = 470 kΩ will cause the offset to change
from -470 µV to +12 mV. A better choice in this case would be the OPA344 from Texas
Instruments (ti.com). The OPA344 has a very small bias current that changes little across the
entire voltage range. Note that when powering the amp from Vs and GND, the input and output
to the op-amp is limited to that range, so if Vs is 4.8 volts your signal range will be 0-4.8 volts. If
this is a concern, use the external wall-wart to supply power to the UE9 as it typically keeps Vs
around 5.2 volts.

The EB37 experiment board is handy for building these circuits.

The information above also applies to resistance measurement. A common way to measure
resistance is to build a voltage divider as shown in Figure 2-4, where one of the resistors is
known and the other is the unknown. If Vin is known and Vout is measured, the voltage divider
equation can be rearranged to solve for the unknown resistance.

2.7.3.7 Measuring current (including 4-20 mA) with a resistive shunt
The following figure shows a typical method to measure the current through a load, or to
measure the 4-20 mA signal produced by a 2-wire (loop-powered) current loop sensor. The
current shunt shown in the figure is simply a resistor.

 25

Figure 2-6. Current Measurement With Arbitrary Load or 2-Wire 4-20 mA Sensor

When measuring a 4-20 mA signal, a typical value for the shunt would be 240 Ω. This results in
a 0.96 to 4.80 volt signal corresponding to 4-20 mA. The external supply must provide enough
voltage for the sensor and the shunt, so if the sensor requires 5 volts the supply must provide at
least 9.8 volts.

For applications besides 4-20 mA, the shunt is chosen based on the maximum current and how
much voltage drop can be tolerated across the shunt. For instance, if the maximum current is
1.0 amp, and 2.5 volts of drop is the most that can be tolerated without affecting the load, a 2.4
Ω resistor could be used. That equates to 2.4 watts, though, which would require a special high
wattage resistor. A better solution would be to use a 0.1 Ω shunt, and then use an amplifier to
increase the small voltage produced by that shunt. If the maximum current to measure is too
high (e.g. 100 amps), it will be difficult to find a small enough resistor and a hall-effect sensor
should be considered instead of a shunt.

The following figure shows typical connections for a 3-wire 4-20 mA sensor. A typical value for
the shunt would be 240 Ω which results in 0.96 to 4.80 volts.

Figure 2-7. Current Measurement With 3-Wire 4-20 mA (Sourcing) Sensor

The sensor shown in Figure 2-7 is a sourcing type, where the signal sources the 4-20 mA
current which is then sent through the shunt resistor and sunk into ground. Another type of 3-
wire sensor is the sinking type, where the 4-20 mA current is sourced from the positive supply,
sent through the shunt resistor, and then sunk into the signal wire. If sensor ground is
connected to UE9 ground, the sinking type of sensor presents a couple of problems, as the
voltage across the shunt resistor is differential (neither side is at ground) and at least one side of
the resistor has a high common mode voltage (equal to the positive sensor supply). If the
sensor and/or UE9 are isolated, a possible solution is to connect the sensor signal or positive
sensor supply to UE9 ground (instead of sensor ground). This requires a good understanding of
grounding and isolation in the system. The LJTick-CurrentShunt is often a simple solution.

 26

Both Figure 2-6 and 2-7 show a 0-100 Ω resistor in series with SGND, which is discussed in
general in Section 2.7.3.4. In this case, if SGND is used (rather than GND), a direct connection
(0 Ω) should be good.

The best way to handle 4-20 mA signals is with the LJTick-CurrentShunt, which is a two channel
active current to voltage converter module that plugs into the UE9 screw-terminals. More
information is available at labjack.com.

2.7.3.8 Floating/Unconnected Inputs
The reading from a floating (no external connection) analog input channel can be tough to
predict and is likely to vary with sample timing and adjacent sampled channels. Keep in mind
that a floating channel is not at 0 volts, but rather is at an undefined voltage. In order to see 0
volts, a 0 volt signal (such as GND) should be connected to the input.

Some data acquisition devices use a resistor, from the input to ground, to bias an unconnected
input to read 0. This is often just for "cosmetic" reasons so that the input reads close to 0 with
floating inputs, and a reason not to do that is that this resistor can degrade the input impedance
of the analog input.

In a situation where it is desired that a floating channel read a particular voltage, say to detect a
broken wire, a resistor can be placed from the AINx screw terminal to the desired voltage (GND,
VS, DACx, ...). A 10 kΩ resistor will pull the analog input readings to within 1 binary count of
any desired voltage, but obviously degrades the input impedance to 10 kΩ. For the specific
case of pulling a floating channel to 0 volts, a 100 kΩ resistor to GND can typically be used to
provide analog input readings within 100 mV of ground.

2.7.4 Internal Temperature Sensor
The UE9 has an internal temperature sensor. Although this sensor measures the temperature
inside the UE9, it has been calibrated to read ambient temperature. For accurate
measurements the temperature of the entire UE9 must stabilize relative to the ambient
temperature, which can take on the order of 1 hour. Best results will be obtained in still air in an
environment with slowly changing ambient temperatures.

The internal temperature sensor is also affected by the operating speed of the UE9. With
Control firmware V1.08 or higher, the UE9 is in high power mode by default, which is assumed
by the LabJack UD driver.

With the UD driver, the internal temperature sensor is read by acquiring analog input channel
133 or 141, and returns degrees K.

2.8 DAC
There are two DACs (digital-to-analog converters or analog outputs) on the UE9. Each DAC
can be set to a voltage between about 0.02 and 4.86 volts with 12-bits of resolution.

Although the DAC values are based on an absolute reference voltage, and not the supply
voltage, the DAC output buffers are powered internally by Vs and thus the maximum output is
limited to slightly less than Vs. Another implication of this is that high frequency power supply
noise might couple to the analog outputs.

 27

The analog output commands are sent as raw binary values (low level functions). For a desired
output voltage, the binary value can be approximated as:

Bits(uncalibrated) = (Volts/4.86)*4096

For a proper calculation, though, use the calibration values (Slope and Offset) stored in the
internal flash on the Control processor (Table 2-4):

Bits = (Slope * Volts) + Offset

The DACs appear both on the screw terminals and on the DB37 connector. These connections
are electrically the same, and the user must exercise caution only to use one connection or the
other, and not create a short circuit.

The DACS on the UE9 can be disabled. When disabled they are placed in a high-impedance
state. Both DACs are enabled or disabled at the same time, so if a command causes one DAC
to be enabled the other is also enabled.

The power-up condition of the DACs can be configured by the user. From the factory, the
DACS default to enabled at minimum voltage (~0 volts). Note that even if the power-up default
for a line is changed to a different voltage or disabled, there is a delay of about 100 ms at
power-up where the DACs are in the factory default condition.

The analog outputs can withstand a continuous short-circuit to ground, even when set at
maximum output.

Voltage should never be applied to the analog outputs, as they are voltage sources themselves.
In the event that a voltage is accidentally applied to either analog output, they do have
protection against transient events such as ESD (electrostatic discharge) and continuous
overvoltage (or undervoltage) of a few volts.

There is an accessory available from LabJack called the LJTick-DAC that provides a pair of 14-
bit analog outputs with a range of ±10 volts. The LJTick-DAC plugs into any digital I/O block,
and thus up to 10 of these can be used per UE9 to add 20 analog outputs.

2.8.1 Typical Analog Output Connections

2.8.1.1 High Current Output
The DACs on the UE9 can output quite a bit of current, but have 50 Ω of source impedance that
will cause voltage drop. To avoid this voltage drop, an op-amp can be used to buffer the output,
such as the non-inverting configuration shown in Figure 2-2. A simple RC filter can be added
between the DAC output and the amp input for further noise reduction. Note that the ability of
the amp to source/sink current near the power rails must still be considered. A possible op-amp
choice would be the TLV246x family (ti.com).

2.8.1.2 Different Output Ranges
The typical output range of the DACs is about 0.02 to 4.86 volts. For other unipolar ranges, an
op-amp in the non-inverting configuration (Figure 2-3) can be used to provide the desired gain.
For example, to increase the maximum output from 4.86 volts to 10.0 volts, a gain of 2.06 is
required. If R2 (in Figure 2-3) is chosen as 100 kΩ, then an R1 of 93.1 kΩ is the closest 1%
resistor that provides a gain greater than 2.06. The +V supply for the op-amp would have to be
greater than 10 volts.

 28

For bipolar output ranges, such as ±10 volts, a similar op-amp circuit can be used to provide
gain and offset, but of course the op-amp must be powered with supplies greater than the
desired output range (depending on the ability of the op-amp to drive it’s outputs close to the
power rails). For example, the EB37 experiment board provides power supplies that are
typically ±9.5 volts. If these supplies are used to power the LT1490A op-amp (linear.com),
which has rail-to-rail capabilities, the outputs could be driven very close to ±9.5 volts. If ±12 or
±15 volt supplies are available, then the op-amp might not need rail-to-rail capabilities to
achieve the desired output range.

A reference voltage is also required to provide the offset. In the following circuit, DAC1 is used
to provide a reference voltage. The actual value of DAC1 can be adjusted such that the circuit
output is 0 volts at the DAC0 mid-scale voltage, and the value of R1 can be adjusted to get the
desired gain. A fixed reference (such as 2.5 volts) could also be used instead of DAC1.

Figure 2-8. ±10 Volt DAC Output Circuit

A two-point calibration should be done to determine the exact input/output relationship of this
circuit. Refer to application note SLOA097 from ti.com for further information about gain and
offset design with op-amps.

2.9 Digital I/O
The LabJack UE9 has 23 digital I/O. The LabJackUD driver uses the following bit numbers to
specify all the digital lines:

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3
20-22 MIO0-MIO2

The UE9 has 8 FIO (flexible digital I/O). The first 4 lines, FIO0-FIO3, appear both on the screw
terminals and on the DB37 connector. These connections are electrically the same, and the
user must exercise caution only to use one connection or the other, and not create a short
circuit. The upper 4 lines appear only on the DB37 connector. By default, the FIO lines are
digital I/O, but they can also be configured as up to 6 timers and 2 counters (see
Timers/Counters Section of this User’s Guide).

 29

The 8 EIO and 4 CIO lines appear only on the DB15 connector. See the DB15 Section of this
User’s Guide for more information.

MIO are standard digital I/O that also have a special multiplexer control function described in
Section 2.7 above (AIN). The MIO are addressed as digital I/O bits 20-22 by the Windows
driver. The MIO hardware (electrical specifications) is the same as the EIO/CIO hardware.

All the digital I/O include an internal series resistor that provides overvoltage/short-circuit
protection. These series resistors also limit the ability of these lines to sink or source current.
Refer to the specifications in Appendix A.

All digital I/O on the UE9 have 3 possible states: input, output-high, or output-low. Each bit of
I/O can be configured individually. When configured as an input, a bit has a ~100 kΩ pull-up
resistor to 3.3 volts (all digital I/O are 5 volt tolerant). When configured as output-high, a bit is
connected to the internal 3.3 volt supply (through a series resistor). When configured as output-
low, a bit is connected to GND (through a series resistor).

The power-up condition of the digital I/O can be configured by the user. From the factory, all
digital I/O are configured to power-up as inputs. Note that even if the power-up default for a line
is changed to output-high or output-low, there is a delay of about 100 ms at power-up where all
digital I/O are in the factory default condition.

The low-level Feedback function (Section 5.3.3) writes and reads all digital I/O. See Section
3.1 for timing information. For information about using the digital I/O under the Windows
LabJackUD driver, see Section 4.3.5.

Many function parameters contain specific bits within a single integer parameter to write/read
specific information. In particular, most digital I/O parameters contain the information for each
bit of I/O in one integer, where each bit of I/O corresponds to the same bit in the parameter (e.g.
the direction of FIO0 is set in bit 0 of parameter FIODir). For instance, in the function
ControlConfig, the parameter FIODir is a single byte (8 bits) that writes/reads the power-up
direction of each of the 8 FIO lines:

• if FIODir is 0, all FIO lines are input,
• if FIODir is 1 (20), FIO0 is output, FIO1-FIO7 are input,
• if FIODir is 5 (20 + 22), FIO0 and FIO2 are output, all other FIO lines are input,
• if FIODir is 255 (20 + … + 27), FIO0-FIO7 are output.

2.9.1 Typical Digital I/O Connections

2.9.1.1 Input: Driven Signals
The most basic connection to a UE9 digital input is a driven signal, often called push-pull. With
a push-pull signal the source is typically providing a high voltage for logic high and zero volts for
logic low. This signal is generally connected directly to the UE9 digital input, considering the
voltage specifications in Appendix A. If the signal is over 5 volts, it can still be connected with a
series resistor. The digital inputs have protective devices that clamp the voltage at GND and
VS, so the series resistor is used to limit the current through these protective devices. For
instance, if a 24 volt signal is connected through a 22 kΩ series resistor, about 19 volts will be
dropped across the resistor, resulting in a current of 1.1 mA, which is no problem for the UE9.
The series resistor should be 22 kΩ or less, to make sure the voltage on the I/O line when low is
pulled below 0.8 volts.

 30

The other possible consideration with the basic push-pull signal is the ground connection. If the
signal is known to already have a common ground with the UE9, then no additional ground
connection is used. If the signal is known to not have a common ground with the UE9, then the
signal ground can simply be connected to UE9 GND. If there is uncertainty about the
relationship between signal ground and UE9 ground (e.g. possible common ground through AC
mains), then a ground connection with a 100 Ω series resistor is generally recommended (see
Section 2.7.3.4).

Figure 2-9. Driven Signal Connection To Digital Input

Figure 2-9 shows typical connections. Rground is typically 0-100 Ω. Rseries is typically 0 Ω
(short-circuit) for 3.3/5 volt logic, or 22 kΩ (max) for high-voltage logic. Note that an individual
ground connection is often not needed for every signal. Any signals powered by the same
external supply, or otherwise referred to the same external ground, should share a single
ground connection to the UE9 if possible.

When dealing with a new sensor, a push-pull signal is often incorrectly assumed when in fact
the sensor provides an open-collector signal as described next.

2.9.1.2 Input: Open-Collector Signals
Open-collector (also called open-drain or NPN) is a very common type of digital signal. Rather
than providing 5 volts and ground, like the push-pull signal, an open-collector signal provides
ground and high-impedance. This type of signal can be thought of as a switch connected to
ground. Since the UE9 digital inputs have a 100 kΩ internal pull-up resistor, an open-collector
signal can generally be connected directly to the input. When the signal is inactive, it is not
driving any voltage and the pull-up resistor pulls the digital input to logic high. When the signal
is active, it drives 0 volts which overpowers the pull-up and pulls the digital input to logic low.
Sometimes, an external pull-up (e.g. 4.7 kΩ from Vs to digital input) will be installed to increase
the strength and speed of the logic high condition.

Figure 2-10. Open-Collector (NPN) Connection To Digital Input

 31

Figure 2-10 shows typical connections. Rground is typically 0-100 Ω, Rseries is typically 0 Ω,
and the external pull-up resistor is generally not required. If there is some uncertainty about
whether the signal is really open-collector or could drive a voltage beyond 5.8 volts, use an
Rseries of 22 kΩ as discussed in Section 2.9.1.1, and the input should be compatible with an
open-collector signal or a driven signal up to at least 48 volts. Note that an individual ground
connection is often not needed for every signal. Any signals powered by the same external
supply, or otherwise referred to the same external ground, should share a single ground
connection to the UE9 if possible.

2.9.1.3 Input: Mechanical Switch Closure
To detect whether a mechanical switch is open or closed, connect one side of the switch to UE9
ground and the other side to a digital input. The behavior is very similar to the open-collector
described above.

Figure 2-11. Basic Mechanical Switch Connection To Digital Input

When the switch is open, the internal 100 kΩ pull-up resistor will pull the digital input to about
3.3 volts (logic high). When the switch is closed, the ground connection will overpower the pull-
up resistor and pull the digital input to 0 volts (logic low). Since the mechanical switch does not
have any electrical connections, besides to the LabJack, it can safely be connected directly to
GND, without using a series resistor or SGND.

When the mechanical switch is closed (and even perhaps when opened), it will bounce briefly
and produce multiple electrical edges rather than a single high/low transition. For many basic
digital input applications, this is not a problem as the software can simply poll the input a few
times in succession to make sure the measured state is the steady state and not a bounce. For
applications using timers or counters, however, this usually is a problem. The hardware
counters, for instance, are very fast and will increment on all the bounces. Some solutions to
this issue are:

• Software Debounce: If it is known that a real closure cannot occur more than once per
some interval, then software can be used to limit the number of counts to that rate.

• Firmware Debounce: See section 2.10.1 for information about timer mode 6.
• Active Hardware Debounce: Integrated circuits are available to debounce switch

signals. This is the most reliable hardware solution. See the MAX6816 (maxim-ic.com)
or EDE2008 (elabinc.com).

• Passive Hardware Debounce: A combination of resistors and capacitors can be used to
debounce a signal. This is not foolproof, but works fine in most applications.

 32

Figure 2-12. Passive Hardware Debounce

Figure 2-12 shows one possible configuration for passive hardware debounce. First, consider
the case where the 1 kΩ resistor is replaced by a short circuit. When the switch closes it
immediately charges the capacitor and the digital input sees logic low, but when the switch
opens the capacitor slowly discharges through the 22 kΩ resistor with a time constant of 22 ms.
By the time the capacitor has discharged enough for the digital input to see logic high, the
mechanical bouncing is done. The main purpose of the 1 kΩ resistor is to limit the current surge
when the switch is close. 1 kΩ limits the maximum current to about 5 mA, but better results
might be obtained with smaller resistor values.

2.9.1.4 Output: Controlling Relays
All the digital I/O lines have series resistance that restricts the amount of current they can sink
or source, but solid-state relays (SSRs) can usually be controlled directly by the digital I/O. The
SSR is connected as shown in the following diagram, where VS (~5 volts) connects to the
positive control input and the digital I/O line connects to the negative control input (sinking
configuration).

Figure 2-13. Relay Connections (Sinking Control, High-Side Load Switching)

When the digital line is set to output-low, control current flows and the relay turns on. When the
digital line is set to input, control current does not flow and the relay turns off. When the digital
line is set to output-high, some current flows, but whether the relay is on or off depends on the
specifications of a particular relay. It is recommended to only use output-low and input.

For example, the Series 1 (D12/D24) or Series T (TD12/TD24) relays from Crydom specify a
max turn-on of 3.0 volts, a min turn-off of 1.0 volts, and a nominal input impedance of 1500 Ω.

• When the digital line is set to output-low, it is the equivalent of a ground connection with
180 Ω (EIO/CIO/MIO) or 550 Ω (FIO) in series. When using an EIO/CIO/MIO line, the
resulting voltage across the control inputs of the relay will be about 5*1500/(1500+180) =
4.5 volts (the other 0.5 volts is dropped across the internal resistance of the

 33

EIO/CIO/MIO line). With an FIO line the voltage across the inputs of the relay will be
about 5*1500/(1500+550) = 3.7 volts (the other 1.3 volts are dropped across the internal
resistance of the FIO line). Both of these are well above the 3.0 volt threshold for the
relay, so it will turn on.

• When the digital line is set to input, it is the equivalent of a 3.3 volt connection with 100

kΩ in series. The resulting voltage across the control inputs of the relay will be close to
zero, as virtually all of the 1.7 volt difference (between VS and 3.3) is dropped across the
internal 100 kΩ resistance. This is well below the 1.0 volt threshold for the relay, so it
will turn off.

• When the digital line is set to output-high, it is the equivalent of a 3.3 volt connection with

180 Ω (EIO/CIO/MIO) or 550 Ω (FIO) in series. When using an EIO/CIO/MIO line, the
resulting voltage across the control inputs of the relay will be about 1.7*1500/(1500+180)
= 1.5 volts. With an FIO line the voltage across the inputs of the relay will be about
1.7*1500/(1500+550) = 1.2 volts. Both of these in the 1.0-3.0 volt region that is not
defined for these example relays, so the resulting state is unknown.

Mechanical relays require more control current than SSRs, and cannot be controlled directly by
the digital I/O on the UE9. To control higher currents with the digital I/O, some sort of buffer is
used. Some options are a discrete transistor (e.g. 2N2222), a specific chip (e.g. ULN2003), or
an op-amp.

Note that the UE9 DACs can source enough current to control almost any SSR and even some
mechanical relays, and thus can be a convenient way to control 1 or 2 relays.

The RB12 relay board is a useful accessory available from LabJack. This board connects to the
DB15 connector on the UE9 and accepts up to 12 industry standard I/O modules (designed for
Opto22 G4 modules and similar).

Another accessory available from LabJack is the LJTick-RelayDriver. This is a two channel
module that plugs into the UE9 screw-terminals, and allows two digital lines to each hold off up
to 50 volts and sink up to 200 mA. This allows control of virtually any solid-state or mechanical
relay.

2.10 Timers/Counters
The UE9 has 6 timers (Timer0-Timer5) and 2 counters (Counter0-Counter1). When any of
these timers or counters are enabled, they take over an FIO line in sequence (Timer0, Timer1,
…, Timer5, Counter0, Counter1). If any one of the 8 timers/counters is enabled, it will take over
FIO0. If any 2 are enabled, they will take over FIO0 and FIO1. If all 8 are enabled, they will
take over all 8 FIO lines. Some examples:

1 Timer enabled, Counter0 disabled, Counter1 disabled
FIO0=Timer0

1 Timer enabled, Counter0 disabled, Counter1 enabled
FIO0=Timer0
FIO1=Counter1

6 Timers enabled, Counter0 enabled, Counter1 enabled
FIO0-FIO5=Timer0-Timer5
FIO6=Counter0

 34

FIO7=Counter1

Timers and counters can appear on various pins, but other I/O lines never move. For example,
Counter1 can appear anywhere from FIO0 to FIO7, depending on how many timers are enabled
and whether Counter0 is enabled.

Applicable digital I/O are automatically configured as input or output as needed when timers and
counters are enabled, and stay that way when the timers/counters are disabled.

See Section 2.9.1 for information about signal connections.

Each counter (Counter0 or Counter1) consists of a 32-bit register that accumulates the number
of falling edges detected on the external pin. If a counter is reset and read in the same function
call, the read returns the value just before the reset.

Counter1 is used internally by stream mode, but in such a case only uses an FIO line if clock
output or external triggering is used. If any timers/counters are being used while
starting/stopping a stream, the possible interaction between timer/counter configuration and
starting/stopping a stream needs to be considered.

The timers (Timer0-Timer5) have various modes available:

Timer Modes

0 16-bit PWM output
1 8-bit PWM output
2 Period input (32-bit, rising edges)
3 Period input (32-bit, falling edges)
4 Duty cycle input
5 Firmware counter input
6 Firmware counter input (with debounce)
7 Frequency output
8 Quadrature input
9 Timer stop input (odd timers only)
10 System timer low read
11 System timer high read
12 Period input (16-bit, rising edges)
13 Period input (16-bit, falling edges)

All timers use the same timer clock (which affects modes 0, 1, 2, 3, 4, 7, 12, and 13). The timer
clock is determined by dividing the base clock by the clock divisor. The divisor has a range of 0-
255, where 0 corresponds to a division of 256. There are 2 choices for the timer base clock.

he low level TimerCounter function has a bit called UpdateConfig that must be set to change

he low level TimerCounter function has UpdateReset bits for each timer that must be set to

TimerBaseClock
0 750 kHz
1 48 MHz (System)

T
the timer clock, timer modes, or number of timers/counters enabled. When this bit is set, all
timers and counters are re-initialized. The LabJackUD driver automatically sets this bit if any
write requests are executed related to mode, enabling/disabling, or clock configuration.

T
change the timer value. The LabJackUD driver automatically sets the appropriate bit when a

 35

value write is executed.

T
the counter to zero. The LabJackUD automatically sets the appropriate bit when a reset reque
is executed.

he low level TimerCounter function has Reset bits for each counter that must be set to reset
st

2.10.1 Timer Mode Descriptions

.10.1.1 PWM Output (16-Bit, Mode 0)
 wave output. Value passed should be 0-65535,

t

he overall frequency of the PWM output is the clock frequency specified by
 the range of

he same clock applies to all timers, so all 16-bit PWM channels will have the same frequency

WM output starts by setting the digital line to output-low for the specified amount of time. The

s

.10.1.2 PWM Output (8-Bit, Mode 1)
r wave output. Value passed should be 0-65535,

he overall frequency of the PWM output is the clock frequency specified by
the range of

he same clock applies to all timers, so all 8-bit PWM channels will have the same frequency

WM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the PWM frequency is 100 Hz, that means the period is 10 milliseconds, and thus

TimerBaseClock

2
Outputs a pulse width modulated rectangular
and determines what portion of the total time is spent low (out of 65536 total increments). Tha
means the duty cycle can be varied from 100% (0 out of 65536 are low) to 0.0015% (65535 out
of 65536 are low).

T
TimerClockBase/TimerClockDivisor divided by 216. The following table shows
available PWM frequencies based on timer clock settings.

Divisor=1 Divisor=256

T
and will have their falling edges at the same time.

P
output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the PWM frequency is 100 Hz, that means the period is 10 milliseconds, and thu
after the command is received by the device it could be anywhere from 0 to 10 milliseconds
before the start of the PWM output.

2
Outputs a pulse width modulated rectangula
and determines what portion of the total time is spent low (out of 65536 total increments). The
lower byte is actually ignored since this is 8-bit PWM. That means the duty cycle can be varied
from 100% (0 out of 65536 are low) to 0.4% (65280 out of 65536 are low).

T
TimerClockBase/TimerClockDivisor divided by 28. The following table shows
available PWM frequencies based on timer clock settings.

0 750 kHz 11.44 0.04 750000
1 48 MHz (System) 732.42 2.86 48000000

PWM16 Frequency Ranges

TimerBaseClock Divisor=1 Divisor=256
0 750 kHz 2929.69 11.44 750000
1 48 MHz (System) 187500.00 732.42 48000000

PWM8 Frequency Ranges

T
and will have their falling edges at the same time.

P

 36

after the command is received by the device it could be anywhere from 0 to 10 milliseconds
before the start of the PWM output.

2.10.1.3 Period Measurement (32-Bit, Modes 2 & 3)
Mode 2: On every rising edge seen by the external pin, this mode records the number of clock
ycles (clock frequency determined by TimerClockBase/TimerClockDivisor) between this rising

 every rising edge, so a read

rd the
rogress. The possible error

ources are:

re
le. That means if five other edge detecting timers are enabled, it is possible (but

•

• rupt 11.4 times per second. If this

bled, the system timer interrupt

Note th
2.10.2.

ro until a new edge is detected. If a timer is reset and read in the same function call,
e read returns the value just before the reset.

.10.1.4 Duty Cycle Measurement (Mode 4)
 duty cycle,

ulse width, and period of the signal. Returns 4 bytes, where the first two bytes (least
nting the number of clock ticks during the

termined

% does not have any edges.

 time this value should be split into a high and low word. One way to do this is
 do a modulus divide by 216 to determine the LSW, and a normal divide by 216 (keep the

quotient and discard the remainder) to determine the MSW.

c
edge and the previous rising edge. The value is updated on
returns the time between the most recent pair of rising edges.

In this 32-bit mode, the Control processor must jump to an interrupt service routine to reco
time, so small errors can occur if another interrupt is already in p
s

• Other edge interrupt timer modes (2/3/4/5/8/9/12/13). If an interrupt is already being
handled due to an edge on another timer, delays of a couple microseconds per timer a
possib
not likely) to have about 10 microseconds of delay.
If a stream is in progress, every sample is acquired in a high-priority interrupt. These
interrupts could cause delays of up to 10 microseconds.
The always active UE9 system timer causes an inter
interrupt happens to be in progress when the edge occurs, a delay of about 1
microsecond is possible. If the software watchdog is ena
takes longer to execute and a delay of a few microseconds is possible.

at the minimum measurable period is limited by the edge rate limit discussed in Section

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return ze
th

Mode 3 is the same except that falling edges are used instead of rising edges.

2
Records the high and low time of a signal on the external pin, which provides the
p
significant word or LSW) are a 16-bit value represe
high signal, and the second two bytes (most significant word or MSW) are a 16-bit value
representing the number of clock ticks during the low signal. The clock frequency is de
by TimerClockBase/TimerClockDivisor.

The appropriate value is updated on every edge, so a read returns the most recent high/low
times. Note that a duty cycle of 0% or 100

To select a clock frequency, consider the longest expected high or low time, and set the clock
frequency such that the 16-bit registers will not overflow.

Note that the minimum measurable high/low time is limited by the edge rate limit discussed in
Section 2.10.2.

When using the LabJackUD driver the value returned is the entire 32-bit value. To determine
the high and low
to

 37

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function c
the read returns the value just before the reset. The duty cyc

all,
le reset is special, in that if the

ignal is low at the time of reset, the high-time/low-time registers are set to 0/65535, but if the
o

interrupt
ervice routine on each edge.

efore the reset.

om mechanical switches. On every applicable
dge seen by the external pin, this mode increments a 32-bit register. Unlike the pure hardware

nterrupt service routine on

ebounce Period = (0-87 ms) + (TimerValue * 87 ms)

lear) or positive edges (bit 0 set) are counted.

ssume this mode is enabled with a value of 1, meaning that the debounce period is 87 ms and

ng the edge detector. Any negative edges
ithin the 87 ms debounce period are ignored. This is good behavior for a normally-high signal

isor of
56. By changing the clock configuration and timer value a wide range of frequencies can be

00/2 = 24 MHz. The minimum frequency is

e.

s
signal is high at the time of reset, the high-time/low-time registers are set to 65535/0. Thus if n
edges occur before the next read, it is possible to tell if the duty cycle is 0% or 100%.

2.10.1.5 Firmware Counter Input (Mode 5)
On every rising edge seen by the external pin, this mode increments a 32-bit register. Unlike
the pure hardware counters, these timer counters require that the firmware jump to an
s

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just b

2.10.1.6 Firmware Counter Input With Debounce (Mode 6)
Intended for frequencies less than 10 Hz, this mode adds a debounce feature to the firmware
counter, which is particularly useful for signals fr
e
counters, these timer counters require that the firmware jump to an i
each edge.

When configuring only (UpdateConfig=1), the low byte of the timer value is a number from 0-
255 that specifies a debounce period in 87 ms increments (plus an extra 0-87 ms of variability):

D

In the high byte (bits 8-16) of the timer value, bit 0 determines whether negative edges (bit 0
c

A
negative edges will be counted. When the input detects a negative edge, it increments the
count by 1, and then waits 87 ms before re-armi
w
where the switch closure causes a brief low signal (Figure 2-9). The debounce period can be
set long enough so that bouncing on both the switch closure and switch open is ignored.

When only updating and not configuring, writing a value of zero to the timer performs a reset.
After reset, a read of the timer value will return zero until a new edge is detected. If a timer is
reset and read in the same function call, the read returns the value just before the reset.

2.10.1.7 Frequency Output (Mode 7)
Outputs a square wave at a frequency determined by TimerClockBase/TimerClockDivisor
divided by 2*Timer#Value. The Value passed should be between 0-255, where 0 is a div
2
output. The maximum frequency is 480000
(750000/256)/(2*256) = 5.7 Hz.

The frequency output has a -3 dB frequency of about 10 MHz on the FIO lines. Accordingly, at
high frequencies the output waveform will get less square and the amplitude will decreas

 38

The output does not necessarily start instantly, but rather waits for the internal clock to roll. For

efore the start of the frequency output.

ll be quadrature channel B. Timer#Value passed has
o effect. The UE9 does 4x quadrature counting, and returns the current count as a signed 32-

urrent count is returned on both even and odd timer

e function call, the read returns the value just before the reset.

 matches

e specified timer value (stop count value), the adjacent even timer is stopped (0/1, 2/3, or 4/5).
535. Generally, the signal applied to this timer is from

obtained if the adjacent timer was initially
onfigured as input (factory default), rather than output-high or output-low.

.10.1.10 System Timer Low/High Read (Modes 10 & 11)
.

n the lower or upper 32-bits of this timer. An FIO line is allocated for
ese modes like normal, even though they are internal readings and do not require any

hat
ters are used to record the edge times. This limits the times to 16-bit

alues, but is accurate to the resolution of the clock, and not subject to any errors due to

n

example, if the output frequency is 100 Hz, that means the period is 10 milliseconds, and thus
after the command is received by the device it could be anywhere from 0 to 10 milliseconds
b

2.10.1.8 Quadrature Input (Mode 8)
Requires 2 timer channels used in adjacent pairs (0/1, 2/3, or 4/5). Even timers will be
quadrature channel A, and odd timers wi
n
bit integer (2’s complement). The same c
value parameters.

Writing a value of zero to either or both timers performs a reset of both. After reset, a read of
either timer value will return zero until a new quadrature count is detected. If a timer is reset
and read in the sam

2.10.1.9 Timer Stop Input (Mode 9)
This mode should only be assigned to odd numbered timers (1, 3, or 5). On every rising edge
seen by the external pin, this mode increments a 16-bit register. When that register
th
The range for the stop count value is 1-65
the adjacent even timer, which is configured as output. One place where this might be useful is
for stepper motors, allowing control over a certain number of steps.

Once this timer reaches the specified stop count value, and stops the adjacent timer, the timers
must be reconfigured (UpdateConfig bit is set) to restart the adjacent timer, or the timer can be
restarted by rewriting the value to the stop timer.

When the adjacent timer is stopped, it is still enabled but just not outputting anything. Thus
rather than returning to whatever previous digital I/O state it had, it goes to input (which has a
100 kΩ pull-up). That means the best results are
c

The read from this timer mode returns the number of edges counted, but does not increment
past the stop count value.

2
The LabJack UE9 has a free-running internal 64-bit system timer with a frequency of 750 kHz
Timer modes 10 & 11 retur
th
external connections.

2.10.1.11 Period Measurement (16-Bit, Modes 12 & 13)
Similar to the 32-bit edge-to-edge timing modes described above (modes 2 & 3), except t
hardware capture regis
v
firmware processing delays.

Note that the minimum measurable period is limited by the edge rate limit discussed in Sectio
2.10.2.

 39

2.10.2 Timer Operation/Performance Notes
ote thaN t the specified timer clock frequency is the same for all timers. That is, TimerClockBase
nd TimerClockDivisor are singular values that apply to all timers. Modes 0, 1, 2, 3, 4, 7, 12,
nd 13, all are affected by the clock frequency, and thus the simultaneous use of these modes

es 2 and 3 since they use 32-bit

at will
utput timers to stop and restart.

upt is

total number of processed edges (all timers) less
an 100,000 per second. That means that in the case of a single timer, there should be no

 further

m

ome
to

rt circuit.

Ground, Vs, AIN, DAC, FIO, and MIO are all described earlier.

a
a
has limited flexibility. This is often not an issue for mod
registers.

The output timer modes (0, 1, and 7) are handled totally by hardware. Once started, no
processing resources are used and other UE9 operations do not affect the output. The major
exception to this is if the TimerCounter UpdateConfig bit is set as described earlier, as th
cause all o

The edge-detecting timer input modes do require UE9 processing resources, as an interr
required to handle each edge. Timer modes 2, 3, 5, 9, 12, and 13 must process every
applicable edge (rising or falling). Timer modes 4 and 8 must process every edge (rising and
falling). To avoid missing counts, keep the
th
more than 1 edge per 10 μs. For multiple timers, all can process an edge simultaneously, but if
for instance 6 timers get an edge at the same time, 60 μs should be allowed before any
edges are applied. If streaming is occurring at the same time, the maximum edge rate will be
less (25,000 per second), and since each edge requires processing time the sustainable strea
rates can also be reduced.

2.11 SCL and SDA (or SCA)
Reserved for factory use. Note that the I2C functionality of the UE9 does not use these
erminals. t

2.12 DB37
The DB37 connector brings out analog inputs, analog outputs, FIO, and other signals. S
signals appear on both the DB37 connector and screw terminals, so care must be taken
avoid a sho

DB37 Pinouts
1 GND 14 AIN9 27 Vs
2 PIN2 15 AIN7 28 Vm+
3 FIO6 16 AIN5 29 DAC1
4 FIO4 17 AIN3 30 GND
5 FIO2 18 AIN1 31 AIN12
6 FIO0 19 GND 32 AIN10
7 MIO1 20 PIN20 33 AIN8
8 GND 21 FIO7 34 AIN6
9 Vm- 22 FIO5 35 AIN4
10 GND 23 FIO3 36 AIN2
11 DAC0 24 FIO1 37 AIN0
12 AIN13 25 MIO0
13 AIN11 26 MIO2

 40

Vm+/Vm- are bipolar power supplies intended to power external multiplexer ICs such as the
MAX4051A (maxim-ic.com). The multiplexers can only pass signals within their power supply
range, so Vm+/Vm- can be used to pass bipolar signals. Nominal voltage is ±5.8 volts at no
load and ±5.6 volts at 1 mA. Both lines have a 100 ohm source impedance, and are designed
to provide 1 mA or less. This is the same voltage supply used internally by the UE9 to bias the
analog input amplifier and multiplexers. If this supply is loaded more than 1 mA, the voltage can
droop to the point that the maximum analog input range is reduced. If this supply is severely
overloaded (e.g. short circuited), then damage could eventually occur.

PIN2/PIN20 (TX0/RX0) currently bring out the UART transmit and receive lines, but in the future
will likely be used as current sources.

1 CB37 Terminal Board
B37 connector and provides

 connect directly to the

d in an offset of only 0.2

hen any sizeable cable lengths are involved, a good practice is to separate current carrying
 An easy way to do this on the CB37 is to use GND as the

ence ground. This works well for passive
rn

.12.2 EB37 Experiment Board

re the 8 EIO are data lines and the 4 CIO are control lines.

he ability of these lines to sink or source current.
Refer to the specifications in Appendix A.

2.12.
The CB37 terminal board from LabJack connects to the UE9’s D
onvenient screw terminal access to all lines. The CB37 is designed toc

UE9, but can also connect via a 37-line 1:1 male-female cable.

When using the analog connections on the CB37, the effect of ground currents should be
considered, particularly when a cable is used and substantial current is sourced/sunk through
the CB37 terminals. For instance, a test was done with a 6 foot cable between the CB37 and
UE9, and a 100 ohm load placed from Vs to GND on the CB37 (~50 mA load). A measurement
of CB37 GND compared to UE9 GND showed 5.9 mV. If a signal was connected to AIN0 on
the CB37 and referred to GND on the CB37, the UE9 reading would be offset by 5.9 mV. The
ame test with the CB37 direct connected to the UE9 (no cable) resultes

mV. In both cases (cable or no cable), the voltage measured between CB37 AGND and UE9
GND was 0.0 mV.

W
ground from ADC reference ground.
current source/sink, and use AGND as the refer
sensors (no power supply), such as a thermocouple, where the only ground current is the retu
of the input bias current of the analog input.

2
The EB37 experiment board connects to the LabJack UE9’s DB37 connector and provides
convenient screw terminal access. Also provided is a solderless breadboard and useful power
supplies. The EB37 is designed to connect directly to the LabJack, but can also connect via a
37-line 1:1 male-female cable.

2.13 DB15
The DB15 connector brings out 12 additional digital I/O. It has the potential to be used as an
expansion bus, whe

In the Windows driver, the EIO are addressed as digital I/O bits 8 through 15, and the CIO are
addressed as bits 16-19.

These 12 channels include an internal series resistor that provides overvoltage/short-circuit
protection. These series resistors also limit t

 41

All digital I/O on the UE9 have 3 possible states: input, output-high, or output-low. Each bit of

e UE9 to industry standard digital I/O modules,
 other qualified individuals, to interface a LabJack with high

r on the LabJack, using
ules. Output or input types of digital I/O
accept G4 series digital I/O modules from
nufacturers such as the G5 series from Grayhill.

utput modules are available with voltage ratings up to 200 VDC or 280 VAC, and current
tings up to 3.5 amps.

onnectors J2 and J3 provide pin-header alternatives to the DB15 and DB37 connectors:

I/O can be configured individually. When configured as an input, a bit has a ~100 kΩ pull-up
resistor to 3.3 volts. When configured as output-high, a bit is connected to the internal 3.3 volt
supply (through a series resistor). When configured as output-low, a bit is connected to GND
(through a series resistor).

DB15 Pinouts
1 Vs 9 CIO0
2 CIO1 10 CIO2
3 CIO3 11 GND
4 EIO0 12 EIO1
5 EIO2 13 EIO3
6 EIO4 14 EIO5
7 EIO6 15 EIO7
8 GND

2.13.1 CB15 Terminal Board
The CB15 terminal board connects to the LabJack UE9’s DB15 connector. It provides
convenient screw terminal access to the 12 digital I/O available on the DB15 connector. The
CB15 is designed to connect directly to the LabJack, or can connect via a standard 15-line 1:1
male-female DB15 cable.

2.13.2 RB12 Relay Board
The RB12 provides a convenient interface for th
allowing electricians, engineers, and
voltages/currents. The RB12 relay board connects to the DB15 connecto
the 12 EIO/CIO lines to control up to 12 I/O mod
modules can be used. The RB12 is designed to
Opto22, and compatible modules from other ma
O
ra

2.14 OEM Connector Options
As of this writing, the UE9 is only produced in the normal form factor with screw-terminals and
DB connectors, but the PCB does have alternate holes available for 0.1” pin-header installation.

C

 42

J2
1 GND 2 VS
3 CIO0 4 CIO1
5 CIO2 6 CIO3
7 GND 8 EIO0
9 EIO1 10 EIO2
11 EIO3 12 EIO4
13 EIO5 14 EIO6
15 EIO7 16 GND

J3

1 GND 2 GND 3 PIN20
4 PIN2 5 FIO7 6 FIO6
7 FIO5 8 FIO4 9 FIO3
10 FIO2 11 FIO1 12 FIO0
13 MIO0 14 MIO1 15 MIO2
16 GND 17 Vs 18 Vm-
19 Vm+ 20 GND 21 DAC1
22 DAC0 23 GND 24 AIN13
25 AIN12 26 AIN11 27 AIN10
28 AIN9 29 AIN8 30 AIN7
31 AIN6 32 AIN5 33 AIN4
34 AIN3 35 AIN2 36 AIN1
37 AIN0 38 GND 39 GND
40 GND

 43

3. Operation

3.1 Command/Response
Everything besides streaming is done in command/response mode, meaning that all
communication is initiated by a command from the host which is followed by a response from
the UE9.

For everything besides timers and counters, the low-level Feedback function is the primary
function used, as it writes and reads virtually all I/O on the UE9. The Windows LabJackUD
driver uses the Feedback function under-the-hood to handle most requests. A single call to the
Feedback function writes and reads all 23 digital I/O, updates the analog outputs, and reads up
to 16 analog inputs.

The following tables show typical measured execution times for the Feedback function. The
time varies with the number of analog inputs requested and the resolution of those inputs.
These were measured by calling the function 1000 times and dividing the total time by 1000,
and thus include everything (Windows latency, communication time, UE9 processing time, etc.).
A “USB high-high” configuration means the UE9 is connected to a high-speed USB2 hub which
is then connected to a high-speed USB2 host. Even though the UE9 is not a high-speed USB
device, such a configuration does provide improved performance.

able 3-1. Typical Feedback Function Execution Times

ote that specifying a resolution index of 17, still returns 16-bit data, but is a special minimum
noise mode.

Resolution Ethernet USB high-high USB other
Index # AIN [milliseconds] [milliseconds] [milliseconds]

0 1.2 1.4 4.0
0-12 4 1.6 1.7 4.0
0-12 8 1.9 2.0 4.0
0-12 16 2.6 2.8 4.0

13 4 1.7 1.8 4.0
13 8 2.2 2.3 4.0
13 16 3.1 3.3 4.9

14 4 2.2 2.3 4.0
14 8 3.2 3.3 5.0
14 16 5.1 5.3 6.3

15 4 4.2 4.4 6.0
15 8 7.2 7.4 9.0
15 16 13.2 13.4 15.1

16 4 12.3 12.5 14.0
16 8 23.4 23.6 25.1
16 16 45.6 45.9 47.2

17 4 44.7 45.0 46.1
17 8 88.2 88.7 90.0
17 16 175.1 175.7 176.5

T

N

 44

As an example with the LabJackUD driver: If requests are added to write/read all 23 bits of

igital I/O, update both analog outputs, and read 16 12-bit analog inputs, the GoOne() function
t()

y high-resolution converter (24-bit sigma-
elta) on the UE9-Pro. This is done with the SingleIO low-level function, not the Feedback

is

mer. When
sing the LabJackUD driver, any timer/counter related requests will cause a call to the low-level

.2 Stream Mode
e obtained in stream mode. Stream is a continuous hardware timed
f channels is scanned at a specified scan rate. The scan rate specifies

ntil retrieved by
e host. This 4 Mbit buffer can hold over 180,000 samples. Each data packet has various

 input
solution (assumes no extra settling time). These rates have been tested using Ethernet and

or

[milliseconds]

d
call can be expected to typically take about 2.6 ms to execute via Ethernet. The AddReques
and GetResult() calls take relatively no time at all.

A resolution value of 18 is passed to use the auxiliar
d
function. The UD driver will automatically use the SingleIO low-level function when resolution
set to 18 on the UE9-Pro, and if there are requests for multiple samples the driver will make
multiple SingleIO calls.

Table 3-2. Typical SingleIO Function Execution Times For Analog Input (UE9-Pro)

The low-level TimerCounter function is used to configure, update, reset, or read ti
u
TimerCounter function. The following tables show typical measured execution times for the
TimerCounter function. The execution time depends very little on what is being done and how
many timers/counters are being configured or read. These were measured by calling the
function 1000 times and dividing the total time by 1000, and thus include everything (Windows
latency, communication time, UE9 processing time, etc.).

Ethernet USB high-high USB other

Table 3-3. Typical TimerCounter Function Execution Times

3
The highest data rates ar
input mode where a list o
the interval between the beginning of each scan. The samples within each scan are acquired
as fast as possible given the specified resolution and extra settling time if any.

As samples are collected, they are placed in a 4 Mbit FIFO buffer on the UE9, u
th
measures to ensure the integrity and completeness of the data received by the host.

The table below shows the maximum streaming data rates for the UE9 versus analog
re
various USB configurations, but some systems might require a USB high-high configuration
Ethernet to obtain these speeds. A “USB high-high” configuration means the UE9 is connected
to a high-speed USB2 hub which is then connected to a high-speed USB2 host. Even though
the UE9 is not a high-speed USB device, such a configuration does often provide improved

[milliseconds] [milliseconds]
TimerCounter 1.2 1.2 4.0

olution Ethernet USB high-high USB other
Index

Res
AIN [milliseconds] [milliseconds] [milliseconds]

18 1 125 125 125 (~125 ms per sample)

 45

performance. For all USB configurations, the worst case continuous stream rate seen in test
is 30 ksamples/s.

ing

tream data rates over USB and Ethernet can also be limited by other factors such as speed of

Rates

 sample is defined as a single conversion of a single channel, while a scan is defined as a

he time between each sample within each scan, without any extra settling time, is a little less

he values in Table 3-4 are generally worst-case conservative values. This is particularly true

tes (Resolution=12)

hen the limits in Table 3-5 are exceeded, an error will occur. Probably scan overlap or buffer

or information about streaming under Windows using the LabJackUD driver, see Section 3.3.6.

 general, a low-level (not using the LabJackUD driver) Ethernet stream is done as follows:

• Open TCP connection on port number PORTA.

Max Stream
Index

S
the PC and quality of the network. General techniques for robust continuous streaming include
increasing the priority of the stream process, and designing an application to automatically
restart the stream if needed.

Resolution Samples/s

Table 3-4. Recommended Maximum Stream Data

A
single conversion of all channels being acquired. That means that according to Table 3-4 the
maximum scan rate for a stream of five 12-bit channels is 50k/5 = 10 kscans/second.

T
than one over the max stream rate specified in the above table.

T
for the 12-bit value. The following table shows the actual measured limits for 12-bit streaming
(Comm firmware V1.40, Control firmware V1.84), reflecting the fact that stream mode is more
efficient with more channels. Note again that Table 3-5 shows sample rates not scan rates.
Divide by the number of channels to determine the scan rate.

0-12 12 50000
13 13 16000
14 14 4000
15 15 1000
16 16 250

Max Stream Max Stream
Samples/s Samples/s

Channels USB high-high Ethernet
1 57000 57000
2 66000 66000
4 68000 74000
8 68000 78000
16 68000 80000

Table 3-5. Actual Maximum Stream Data Ra

W
overflow. The UE9 will not return bad data, so these max data rates can be attempted, and
either valid data will be collected or an error will occur.

F

In

• Call FlushBuffer.

 46

• Open TCP connection on port number PORTB.
e and load the scan table (list of

• e stream.
 to the host using PORTB.

3.2.1 External Triggering
 initiates each scan in stream mode. Optionally, an external

indows

ne application of external triggering is for synchronized streaming from multiple devices. In
D

ternal scan clock to
mally

omething that could be useful is the ability to define a scan with multiple samples from the
r

n

ne thing to consider when using external triggering is the buffering that takes place within the

s

er

treaming always uses Counter1 internally, and thus Counter1 is not available for counting

ck

hen using external stream clock output or input, the timer/counter configuration should not be

nabling clock output causes the FIO line to be set to output when the configuration command

• Call StreamConfig on PORTA to set the scan rat
channels to be sampled each scan).
Call StreamStart on PORTA to start th

• The UE9 will begin sending StreamData packets
• Call StreamStop on PORTA to stop the stream.

The internal scan clock normally
pulse (falling edge) on the Counter1 FIO line can initiate each scan. In the low level
StreamConfig function, this is enabled by setting bit 6 of byte 9. In the LabJackUD W
driver this is controlled with the put_config special channel
LJ_chSTREAM_EXTERNAL_TRIGGER.

O
such a case, set bit 7 of byte 9 on the main unit to enable scan pulse output. In the LabJackU
Windows driver this is controlled with the put_config special channel
LJ_chSTREAM_CLOCK_OUTPUT. The main unit will then use the in
initiate each scan, and output a pulse per scan on the Counter1 FIO line. The output is nor
high, goes low at the beginning of each scan, and stays low for about 6 microseconds. All other
synchronized units are then configured for an external scan trigger.

S
same channel. So for instance, a scan could be defined as channels 0/1/0/1/0/1 or 0/0/1/1 o
whatever. This can provide a small burst of samples for each external trigger. The scan list ca
have up to 128 channels. When using the LabJackUD driver, duplicate channels in a scan only
works if reading all channels simultaneously, as channel-by-channel stream reads are specified
by channel number.

O
UE9 and PC. If the external signal is fairly continuous, such as in synchronized streaming, this
is not a problem, but if the external trigger is more of a one-time pulse the buffering must be
considered to get the data when desired. For instance, each UE9 stream data packet contain
16 samples, so if there is only 1 sample per scan the UE9 will not send any data until it has
accumulated 16 scans. Some applications might resolve this by defining each scan as 16
samples, even if it is just 16 samples of the same channel (see previous paragraph). Anoth
buffering issue will come into play if the LabJackUD driver is used with USB communication, as
the driver reads 4 packets at a time (64 samples).

S
while streaming. Additionally, if clock output or external triggering is enabled, the normal
Counter1 FIO line will be claimed, which is the next FIO available after all other enabled
timers/counters. If no other timers/counters are enabled, FIO0 will be used for stream clo
output or input.

W
changed after starting the stream, as that could cause a glitch or could even cause the
Counter1 FIO pin number to change.

E
is executed, but the clock output will not actually begin until the stream is started. Enabling

 47

clock input causes the FIO line to be set to input when the configuration command is executed,
but interrupts will not occur until the stream is started.

Note that external triggering causes 1 scan per trigger pulse. It is not used where a single pulse
starts a continuous stream or a burst of multiple scans, as that type of trigger is better handled
in software. In software, an arbitrarily complex set of trigger conditions can be watched for in
continuous stream data, and when the trigger occurs the software can “keep” a specified
number of scans, “keep” all scans while the trigger is true, or whatever other behavior is
desired. In addition, the software can maintain a history buffer and “keep” a specified number of
scans before the trigger (pre-trigger scans). Since stream data can consist of analog, digital,
and timer/counter inputs, the trigger conditions can use any or all of those.

3.2.2 Streaming Digital Inputs, Timers, and Counter0
There are special channel numbers that allow digital inputs, timers, and Counter0, to be
streamed in with analog input data.

Channel#
193 EIO_FIO
194 MIO_CIO
200 Timer0
201 Timer1
202 Timer2
203 Timer3
204 Timer4
205 Timer5
210 Counter0
224 TC_Capture

Table 3-6. Special Stream Channels

Channel number 193 returns the input states of 16 bits of digital I/O. FIO is the lower 8 bits and
EIO is the upper 8 bits. This channel is generally used to acquire digital input data in stream
mode. Channel 194 is the same thing for the CIO and MIO lines (Control firmware V1.69 or
higher). The CIO are in the lower byte and the MIO are in the upper byte.

Channels 200-205 and 210 retrieve the least significant word (LSW, lower 2 bytes) of the
specified timer/counter. At the same time that any one of these is sampled, the most significant
word (MSW, upper 2 bytes) of that particular timer/counter is stored in an internal capture
register (TC_Capture), so that the proper value can be sampled later in the scan. For any
timer/counter where the MSW is wanted, channel number 224 must be sampled after that
channel and before any other timer/counter channel. For example, a scan list of
{200,224,201,224} would get the LSW of Timer0, the MSW of Timer0, the LSW of Timer1, and
the MSW of Timer1. A scan list of {200,201,224} would get the LSW of Timer0, the LSW of
Timer1, and the MSW of Timer1 (MSW of Timer0 is lost).

Adding these special channels to the stream scan list does not configure those inputs. If any of
the FIO or EIO lines have been configured as outputs, they will need to be reconfigured as
inputs to provide proper reads. The timers/counters must be configured before streaming using
normal timer/counter configuration commands.

The timing for these special channels is the same as for normal analog channels. For instance,
a stream of the scan list {0,1,200,224,201,224} counts as 6 channels, and the maximum scan

 48

rate is determined by taking the maximum sample rate at the specified resolution and dividing
by 6.

Special care must be taken when streaming timers configured in mode 2 or 3 (32-bit period
measurement). It is possible for the LSW to roll, but the MSW be captured before it is
incremented. If this is an unacceptable situation, then only the LSW or MSW should be used,
but not both.

Mode 11, the upper 32 bits of the system timer, is not available for stream reads. Note that
when streaming with the internal scan trigger, the timing is known anyway (elapsed time = scan
rate * scan number) and it does not make sense to stream the system timer modes 10 or 11.
With external triggering, there might be reasons to stream the available timer mode 10.

 49

4. LabJackUD High-Level Driver
The low-level UE9 functions are described in Section 5, but most Windows applications will use
the LabJackUD driver instead.

The driver requires a PC running Windows 98, ME, 2000, or XP. It is recommended to install
the software before making a USB connection to a LabJack.

The download version of the installer consists of a single executable. This installer places the
driver (LabJackUD.dll) in the Windows System directory, along with a support DLL
(LabJackUSB.dll). Generally this is c:\Windows\System\ on Windows 98/ME, and
c:\Windows\System32\ on Windows 2000/XP.

Other files, including the header and Visual C library file, are installed to the LabJack drivers
directory which defaults to c:\Program Files\LabJack\drivers\.

4.1 Overview
The general operation of the LabJackUD functions is as follows:

• Open a LabJack.
• Build a list of requests to perform (Add).
• Execute the list (Go).
• Read the result of each request (Get).

For example, to write an analog output and read an analog input:

//Use one of the following lines to open the first found LabJack UE9
//over USB or Ethernet and get a handle to the device.
//The general form of the open function is:
//OpenLabJack (DeviceType, ConnectionType, Address, FirstFound, *Handle)

//Open the first found LabJack UE9 over USB.
lngErrorcode = OpenLabJack (LJ_dtUE9, LJ_ctUSB, "1", 1, &lngHandle);
// … or open a specified LabJack UE9 over Ethernet.
lngErrorcode = OpenLabJack (LJ_dtUE9, LJ_ctETHERNET, "192.168.1.209", 0, &lngHandle);

//Set DAC1 to 2.5 volts.
//The general form of the AddRequest function is:
//AddRequest (Handle, IOType, Channel, Value, x1, UserData)
lngErrorcode = AddRequest (lngHandle, LJ_ioPUT_DAC, 1, 2.50, 0, 0);

//Request a read from AIN3.
lngErrorcode = AddRequest (lngHandle, LJ_ioGET_AIN, 3, 0, 0, 0);

//Execute the requests.
lngErrorcode = GoOne (lngHandle);

//Get the result of the DAC1 request just to check for an errorcode.
//The general form of the GetResult function is:
//GetResult (Handle, IOType, Channel, *Value)
lngErrorcode = GetResult (lngHandle, LJ_ioPUT_DAC, 1, 0);

//Get the AIN3 voltage.
lngErrorcode = GetResult (lngHandle, LJ_ioGET_AIN, 3, &dblValue);

 50

The AddRequest/Go/GetResult method is often the most efficient. As shown above, multiple
requests can be executed with a single Go() or GoOne() call, and the driver might be able to
optimize the requests into fewer low-level calls. The other option is to use the eGet or ePut
functions which combine the AddRequest/Go/GetResult into one call. The above code would
then look like (assuming the UE9 is already open):

//Set DAC1 to 2.5 volts.
//The general form of the ePut function is:
//ePut (Handle, IOType, Channel, Value, x1)
lngErrorcode = ePut (lngHandle, LJ_ioPUT_DAC, 1, 2.50, 0);

//Read AIN3.
//The general form of the eGet function is:
//eGet (Handle, IOType, Channel, *Value, x1)
lngErrorcode = eGet (lngHandle, LJ_ioGET_AIN, 3, &dblValue, 0);

In the case of the UE9, the first example using add/go/get handles both the DAC command and
AIN read in a single low-level call, while in the second example using ePut/eGet two low-level
commands are used. Examples in the following documentation will use both the add/go/get
method and the ePut/eGet method, and they are generally interchangeable. See Section 4.3 for
more pseudocode examples.

All the request and result functions always have 4 common parameters, and some of the
functions have 2 extra parameters:

• Handle – This is an input to all request/result functions that tells the function
what LabJack it is talking to. The handle is obtained from the OpenLabJack
function.

• IOType – This is an input to all request/result functions that specifies what type
of action is being done.

• Channel – This is an input to all request/result functions that generally specifies
which channel of I/O is being written/read, although with the config IOTypes
special constants are passed for channel to specify what is being configured.

• Value – This is an input or output to all request/result functions that is used to
write or read the value for the item being operated on.

• x1 – This parameter is only used in some of the request/result functions, and is
used when extra information is needed for certain IOTypes.

• UserData – This parameter is only used in some of the request/result functions,
and is data that is simply passed along with the request, and returned unmodified
by the result. Can be used to store any sort of information with the request, to
allow a generic parser to determine what should be done when the results are
received.

4.1.1 Function Flexibility
The driver is designed to be flexible so that it can work with various different LabJacks with
different capabilities. It is also designed to work with different development platforms with
different capabilities. For this reason, many of the functions are repeated with different forms of
parameters, although their internal functionality remains mostly the same. In this
documentation, a group of functions will often be referred to by their shortest name. For
example, a reference to Add or AddRequest most likely refers to any of the three variations:
AddRequest(), AddRequestS() or AddRequestSS().

 51

In the sample code, alternate functions (S or SS versions) can generally be substituted as
desired, changing the parameter types accordingly. All samples here are written in pseudo-C.

Functions with an “S” or “SS” appended are provided for programming languages that can’t
include the LabJackUD.h file and therefore can’t use the constants included. It is generally poor
programming form to hardcode numbers into function calls, if for no other reason than it is hard
to read. Functions with a single “S” replace the IOType parameter with a const char * which is a
string. A string can then be passed with the name of the desired constant. Functions with a
double “SS” replace both the IOType and Channel with strings. OpenLabJackS replaces both
DeviceType and ConnectionType with strings since both take constants.

For example:

In C, where the LabJackUD.h file can be included and the constants used directly:
AddRequest(Handle, LJ_ioGET_CONFIG, LJ_ioHARDWARE_VERSION,0,0,0);

The bad way (hard to read) when LabJackUD.h cannot be included:
AddRequest(Handle, 1001, 10, 0, 0, 0);

The better way when LabJackUD.h cannot be included, is to pass strings:
AddRequestSS(Handle, “LJ_ioGET_CONFIG”, “LJ_ioHARDWARE_VERSION”,0,0,0);

Continuing on this vein, the function StringToConstant() is useful for error handling routines, or
with the GetFirst/Next functions which do not take strings. The StringToConstant() function
takes a string and returns the numeric constant. So, for example:

LJ_ERROR err;
err = AddRequestSS(Handle, “LJ_ioGETCONFIG”, “LJ_ioHARDWARE_VERSION”,0,0,0);
if (err == StringToConstant(“LJE_INVALID_DEVICE_TYPE”))
 do some error handling..

Once again, this is much clearer than:

if (err == 2)

4.1.2 Multi-Threaded Operation
This driver is completely thread safe. With some very minor exceptions, all these functions can
be called from multiple threads at the same time and the driver will keep everything straight.
Because of this Add, Go, and Get must be called from the same thread for a particular set of
requests/results. Internally the list of requests and results are split by thread. This allows
multiple threads to be used to make requests without accidentally getting data from one thread
into another. If requests are added, and then results return LJE_NO_DATA_AVAILABLE or a
similar error, chances are the requests and results are in different threads.

The driver tracks which thread a request is made in by the thread ID. If a thread is killed and
then a new one is created, it is possible for the new thread to have the same ID. Its not really a
problem if Add is called first, but if Get is called on a new thread results could be returned from
the thread that already ended.

As mentioned, the list of requests and results is kept on a thread-by-thread basis. Since the
driver cannot tell when a thread has ended, the results are kept in memory for that thread
regardless. This is not a problem in general as the driver will clean it all up when unloaded.
When it can be a problem is in situations where threads are created and destroyed
continuously. This will result in the slow consumption of memory as requests on old threads are

 52

left behind. Since each request only uses 44 bytes, and as mentioned the ID's will eventually
get recycled, it will not be a huge memory loss. In general, even without this issue, it is strongly
recommended to not create and destroy a lot of threads. It is terribly slow and inefficient. Use
thread pools and other techniques to keep new thread creation to a minimum. That is what is
done internally.

The one big exception to the thread safety of this driver is in the use of the Windows
TerminateThread() function. As is warned in the MSDN documentation, using
TerminateThread() will kill the thread without releasing any resources, and more importantly,
releasing any synchronization objects. If TerminateThread() is used on a thread that is currently
in the middle of a call to this driver, more than likely a synchronization object will be left open on
the particular device and access to the device will be impossible until the application is
restarted. On some devices, it can be worse. On devices that have interprocess
synchronization, such as the U12, calling TerminateThread() may kill all access to the device
through this driver no matter which process is using it and even if the application is restarted.
Avoid using TerminateThread()! All device calls have a timeout, which defaults to 1 second, but
can be changed. Make sure to wait at least as long as the timeout for the driver to finish.

 53

4.2 Function Reference
The LabJack driver file is named LabJackUD.dll, and contains the functions described in this
section.

Some parameters are common to many functions:

• LJ_ERROR – A LabJack specific numeric error code. 0 means no error. (long, signed
32-bit integer).

• LJ_HANDLE – This value is returned by OpenLabJack, and then passed on to other
functions to identify the opened LabJack. (long, signed 32-bit integer).

To maintain compatibility with as many languages as possible, every attempt has been made to
keep the parameter types very basic. Also, many functions have multiple prototypes. The
declarations that follow, are written in C.

To help those unfamiliar with strings in C, these functions expect null terminated 8 bit ASCII
strings. How this translates to a particular development environment is beyond the scope of this
documentation. A const char * is a pointer to a string that won’t be changed by the driver.
Usually this means it can simply be a constant such as “this is a string”. A char * is a pointer to
a string that will be changed. Enough bytes must be preallocated to hold the possible strings
that will be returned. Functions with char * in their declaration will have the required length of
the buffer documented below.

Pointers must be initialized in general, although null (0) can be passed for unused or unneeded
values. The pointers for GetStreamData and RawIn/RawOut requests are not optional. Arrays
and char * type strings must be initialized to the proper size before passing to the DLL.

4.2.1 ListAll()
Returns all the devices found of a given DeviceType and ConnectionType. Searching over
Ethernet relies on the DiscoveryUDP function (Section 5.2.3), which might not work on certain
network configurations.

ListAllS() is a special version where DeviceType and ConnectionType are strings rather than
longs. This is useful for passing string constants in languages that cannot include the header
file. The strings should contain the constant name as indicated in the header file (such as
“LJ_dtUE9” and ”LJ_ctUSB”). The declaration for the S version of open is the same as below
except for (const char *pDeviceType, const char *pConnectionType, …).

Declaration:
LJ_ERROR _stdcall ListAll (long DeviceType,

long ConnectionType,
long *pNumFound,
long *pSerialNumbers,
long *pIDs,
double *pAddresses)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• DeviceType – The type of LabJack to search for. Constants are in the
labjackud.h file.

 54

• ConnectionType – Enter the constant for the type of connection to use in the
search.

• pSerialNumbers – Must pass a pointer to a buffer with at least 128 elements.
• pIDs – Must pass a pointer to a buffer with at least 128 elements.
• pAddresses – Must pass a pointer to a buffer with at least 128 elements.

Outputs:
• pNumFound – Returns the number of devices found, and thus the number of

valid elements in the return arrays.
• pSerialNumbers – Array contains serial numbers of any found devices.
• pIDs – Array contains local IDs of any found devices.
• pAddresses – Array contains IP addresses of any found devices. The function

DoubleToStringAddress() is useful to convert these to string notation.

4.2.2 OpenLabJack()
Call OpenLabJack() before communicating with a device. This function can be called multiple
times, however, once a LabJack is open, it remains open until your application ends (or the DLL
is unloaded). If OpenLabJack is called repeatedly with the same parameters, thus requesting
the same type of connection to the same LabJack, the driver will simply return the same
LJ_HANDLE every time. Internally, nothing else happens. This includes when the device is
reset, or disconnected. Once the device is reconnected, the driver will maintain the same
handle. If an open call is made for USB, and then Ethernet, a different handle will be returned
for each connection type and both connections will be open.

OpenLabJackS() is a special version of open where DeviceType and ConnectionType are
strings rather than longs. This is useful for passing string constants in languages that cannot
include the header file. The strings should contain the constant name as indicated in the header
file (such as “LJ_dtUE9” and ”LJ_ctUSB”). The declaration for the S version of open is the
same as below except for (const char *pDeviceType, const char *pConnectionType, …).

Declaration:
LJ_ERROR _stdcall OpenLabJack (long DeviceType,

long ConnectionType,
const char *pAddress,
long FirstFound,
LJ_HANDLE *pHandle)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• DeviceType – The type of LabJack to open. Constants are in the labjackud.h
file.

• ConnectionType – Enter the constant for the type of connection, USB or
Ethernet.

• pAddress – For USB, pass the local ID or serial number of the desired LabJack.
For Ethernet pass the IP address of the desired LabJack. If FirstFound is true,
Address is ignored.

• FirstFound – If true, then the Address and ConnectionType parameters are
ignored and the driver opens the first LabJack found with the specified
DeviceType. Generally only recommended when a single LabJack is connected.
Currently only supported with USB. If a USB device is not found, it will try
Ethernet but with the given Address.

 55

Outputs:
• pHandle – A pointer to a handle for a LabJack.

4.2.3 eGet() and ePut()
The eGet and ePut functions do AddRequest, Go, and GetResult, in one step.

The eGet versions are designed for inputs or retrieving parameters as they take a pointer to a
double where the result is placed, but can be used for outputs if pValue is preset to the desired
value. This is also useful for things like StreamRead where a value is input and output (number
of scans requested and number of scans returned).

The ePut versions are designed for outputs or setting configuration parameters and will not
return anything except the error code.

eGetS() and ePutS() are special versions of these functions where IOType is a string rather
than a long. This is useful for passing string constants in languages that cannot include the
header file, and is generally used with all IOTypes except put/get config. The string should
contain the constant name as indicated in the header file (such as “LJ_ioANALOG_INPUT”).
The declarations for the S versions are the same as the normal versions except for (…, const
char *pIOType, …).

eGetSS() and ePutSS() are special versions of these functions where IOType and Channel are
strings rather than longs. This is useful for passing string constants in languages that cannot
include the header file, and is generally only used with the put/get config IOTypes. The strings
should contain the constant name as indicated in the header file (such as “LJ_ioPUT_CONFIG”
and “LJ_chLOCALID”). The declaration for the SS versions are the same as the normal
versions except for (…, const char *pIOType, const char *pChannel, …).

The declaration for ePut is the same as eGet except that Value is not a pointer (…, double
Value, …), and thus is an input only.

Declaration:
LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,

long IOType,
long Channel,
double *pValue,
long x1)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.
• Channel – The channel number of the particular IOType.
• pValue – Pointer to Value sends and receives data.
• x1 – Optional parameter used by some IOTypes.

Outputs:
• pValue – Pointer to Value sends and receives data.

 56

4.2.4 eAddGoGet()
This function passes multiple requests via arrays, then executes a GoOne() and returns all the
results via the same arrays.

The parameters that start with “*a” are arrays, and all must be initialized with at least a number
of elements equal to NumRequests.

Declaration:
LJ_ERROR _stdcall eAddGoGet (LJ_HANDLE Handle,
 long NumRequests,

long *aIOTypes,
long *aChannels,
double *aValues,
long *ax1s,
long *aRequestErrors,
long *GoError,
long *aResultErrors)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• NumRequests – This is the number of requests that will be made, and thus the

number of results that will be returned. All the arrays must be initialized with at
least this many elements.

• aIOTypes – An array which is the list of IOTypes.
• aChannels – An array which is the list of Channels.
• aValues – An array which is the list of Values to write.
• ax1s – An array which is the list of x1s.

Outputs:
• aValues – An array which is the list of Values read.
• aRequestErrors – An array which is the list of errorcodes from each

AddRequest().
• GoError – The errorcode returned by the GoOne() call.
• aResultErrors – An array which is the list of errorcodes from each GetResult().

4.2.5 AddRequest()
Adds an item to the list of requests to be performed on the next call to Go() or GoOne().

When AddRequest() is called on a particular Handle, all previous data is erased and cannot be
retrieved by any of the Get functions until a Go function is called again. This is on a device by
device basis, so you can call AddRequest() with a different handle while a device is busy
performing its I/O.

AddRequest() only clears the request and result lists on the device handle passed and only for
the current thread. For example, if a request is added to each of two different devices, and then
a new request is added to the first device but not the second, a call to Go() will cause the first
device to execute the new request and the second device to execute the original request.

 57

In general, the execution order of a list of requests in a single Go call is unpredictable, except
that all configuration type requests are executed before acquisition and output type requests.

AddRequestS() is a special version of the Add function where IOType is a string rather than a
long. This is useful for passing string constants in languages that cannot include the header file,
and is generally used with all IOTypes except put/get config. The string should contain the
constant name as indicated in the header file (such as “LJ_ioANALOG_INPUT”). The
declaration for the S version of Add is the same as below except for (…, const char *pIOType,
…).

AddRequestSS() is a special version of the Add function where IOType and Channel are strings
rather than longs. This is useful for passing string constants in languages that cannot include
the header file, and is generally only used with the put/get config IOTypes. The strings should
contain the constant name as indicated in the header file (such as “LJ_ioPUT_CONFIG” and
“LJ_chLOCALID”). The declaration for the SS version of Add is the same as below except for
(…, const char *pIOType, const char *pChannel, …).

Declaration:
LJ_ERROR _stdcall AddRequest (LJ_HANDLE Handle,

long IOType,
long Channel,
double Value,
long x1,
double UserData)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.
• Channel – The channel number of the particular IOType.
• Value – Value passed for output channels.
• x1 – Optional parameter used by some IOTypes.
• UserData – Data that is simply passed along with the request, and returned

unmodified by GetFirstResult() or GetNextResult(). Can be used to store any
sort of information with the request, to allow a generic parser to determine what
should be done when the results are received.

Outputs:
• None

4.2.6 Go()
After using AddRequest() to make an internal list of requests to perform, call Go() to actually
perform the requests. This function causes all requests on all open LabJacks to be performed.
After calling Go(), call GetResult() or similar to retrieve any returned data or errors.

Go() can be called repeatedly to repeat the current list of requests. Go() does not clear the list
of requests. Rather, after a call to Go(), the first subsequent AddRequest() call to a particular
device will clear the previous list of requests on that particular device only.

 58

Note that for a single Go() or GoOne() call, the order of execution of the request list cannot be
predicted. Since the driver does internal optimization, it is quite likely not the same as the order
of AddRequest() function calls. One thing that is known, is that configuration settings like
ranges, stream settings, and such, will be done before the actual acquisition or setting of
outputs.

Declaration:
LJ_ERROR _stdcall Go()

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• None
Outputs:

• None

4.2.7 GoOne()
After using AddRequest() to make an internal list of requests to perform, call GoOne() to
actually perform the requests. This function causes all requests on one particular LabJack to be
performed. After calling GoOne(), call GetResult() or similar to retrieve any returned data or
errors.

GoOne() can be called repeatedly to repeat the current list of requests. GoOne() does not clear
the list of requests. Rather, after a particular device has performed a GoOne(), the first
subsequent AddRequest() call to that device will clear the previous list of requests on that
particular device only.

Note that for a single Go() or GoOne() call, the order of execution of the request list cannot be
predicted. Since the driver does internal optimization, it is quite likely not the same as the order
of AddRequest() function calls. One thing that is known, is that configuration settings like
ranges, stream settings, and such, will be done before the actual acquisition or setting of
outputs.

Declaration:
LJ_ERROR _stdcall GoOne(LJ_HANDLE Handle)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
Outputs:

• None

4.2.8 GetResult()
Calling either Go function creates a list of results that matches the list of requests. Use
GetResult() to read the result and errorcode for a particular IOType and Channel. Normally this
function is called for each associated AddRequest() item. Even if the request was an output,
the errorcode should be evaluated.

 59

None of the Get functions will clear results from the list. The first AddRequest() call subsequent
to a Go call will clear the internal lists of requests and results for a particular device.

When processing raw in/out or stream data requests, the call to a Get function does not actually
cause the data arrays to be filled. The arrays are filled during the Go call (if data is available),
and the Get call is used to find out many elements were placed in the array.

GetResultS() is a special version of the Get function where IOType is a string rather than a long.
This is useful for passing string constants in languages that cannot include the header file, and
is generally used with all IOTypes except put/get config. The string should contain the constant
name as indicated in the header file (such as “LJ_ioANALOG_INPUT”). The declaration for the
S version of Get is the same as below except for (…, const char *pIOType, …).

GetResultSS() is a special version of the Get function where IOType and Channel are strings
rather than longs. This is useful for passing string constants in languages that cannot include
the header file, and is generally only used with the put/get config IOTypes. The strings should
contain the constant name as indicated in the header file (such as “LJ_ioPUT_CONFIG” and
“LJ_chLOCALID”). The declaration for the SS version of Get is the same as below except for
(…, const char *pIOType, const char *pChannel, …).

It is acceptable to pass NULL (or 0) for any pointer that is not required.

Declaration:
LJ_ERROR _stdcall GetResult (LJ_HANDLE Handle,

long IOType,
long Channel,
double *pValue)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.
• Channel – The channel number of the particular IOType.

Outputs:
• pValue – A pointer to the result value.

4.2.9 GetFirstResult() and GetNextResult()
Calling either Go function creates a list of results that matches the list of requests. Use
GetFirstResult() and GetNextResult() to step through the list of results in order. When either
function returns LJE_NO_MORE_DATA_AVAILABLE, there are no more items in the list of
results. Items can be read more than once by calling GetFirstResult() to move back to the
beginning of the list.

UserData is provided for tracking information, or whatever else the user might need.

None of the Get functions clear results from the list. The first AddRequest() call subsequent to a
Go call will clear the internal lists of requests and results for a particular device.

When processing raw in/out or stream data requests, the call to a Get function does not actually
cause the data arrays to be filled. The arrays are filled during the Go call (if data is available),
and the Get call is used to find out many elements were placed in the array.

 60

It is acceptable to pass NULL (or 0) for any pointer that is not required.

The parameter lists are the same for the GetFirstResult() and GetNextResult() declarations.

Declaration:
LJ_ERROR _stdcall GetFirstResult (LJ_HANDLE Handle,

long *pIOType,
long *pChannel,
double *pValue,
long *px1,
double *pUserData)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
Outputs:

• pIOType – A pointer to the IOType of this item in the list.
• pChannel – A pointer to the channel number of this item in the list.
• pValue – A pointer to the result value.
• px1 – A pointer to the x1 parameter of this item in the list.
• pUserData – A pointer to data that is simply passed along with the request, and

returned unmodified. Can be used to store any sort of information with the
request, to allow a generic parser to determine what should be done when the
results are received.

4.2.10 DoubleToStringAddress()
Some special-channels of the config IOType pass IP address (and others) in a double. This
function is used to convert the double into a string in normal decimal-dot or hex-dot notation.

Declaration:
LJ_ERROR _stdcall DoubleToStringAddress (double Number,

char *pString,
long HexDot)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Number – Double precision number to be converted.
• pString – Must pass a buffer for the string of at least 24 bytes.
• HexDot – If not equal to zero, the string will be in hex-dot notation rather than

decimal-dot.
Outputs:

• pString – A pointer to the string representation.

4.2.11 StringToDoubleAddress()
Some special-channels of the config IOType pass IP address (and others) in a double. This
function is used to convert a string in normal decimal-dot or hex-dot notation into a double.

 61

Declaration:
LJ_ERROR _stdcall StringToDoubleAddress (const char *pString,

double *pNumber,
long HexDot)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• pString – A pointer to the string representation.
• HexDot – If not equal to zero, the passed string should be in hex-dot notation

rather than decimal-dot.
Outputs:

• pNumber – A pointer to the double precision representation.

4.2.12 StringToConstant()
Converts the given string to the appropriate constant number. Used internally by the S
functions, but could be useful to the end user when using the GetFirst/Next functions without the
ability to include the header file. In this case a comparison could be done on the return values
such as:

if (IOType == StringToConstant("LJ_ioANALOG_INPUT"))

This function returns LJ_INVALID_CONSTANT if the string is not recognized.

Declaration:
long _stdcall StringToConstant (const char *pString)

Parameter Description:
Returns: Constant number of the passed string.
Inputs:

• pString – A pointer to the string representation of the constant.
Outputs:

• None

4.2.13 ErrorToString()
Outputs a string describing the given error code or an empty string if not found.

Declaration:
void _stdcall ErrorToString (LJ_ERROR ErrorCode,

char *pString)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• ErrorCode – LabJack errorcode.
• pString – Must pass a buffer for the string of at least 256 bytes.

Outputs:
• *pString – A pointer to the string representation of the errorcode.

 62

4.2.14 GetDriverVersion()
Returns the version number of this Windows LabJack driver.

Declaration:
double _stdcall GetDriverVersion();

Parameter Description:
Returns: Driver version.
Inputs:

• None
Outputs:

• None

4.2.15 TCVoltsToTemp()
A utility function to convert thermocouple voltage readings to temperature.

Declaration:
LJ_ERROR _stdcall TCVoltsToTemp (long TCType,

double TCVolts,
double CJTempK,
double *pTCTempK)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• TCType – A constant that specifies the thermocouple type, such as LJ_ttK.
• TCVolts – The thermocouple voltage.
• CJTempK – The temperature of the cold junction in degrees K.

Outputs:
• pTCTempK – Returns the calculated thermocouple temperature.

4.2.16 ResetLabJack()
Sends a reset command to the LabJack hardware.

Resetting the LabJack does not invalidate the handle, thus the device does not have to be
opened again after a reset, but a Go call is likely to fail for a couple seconds after until the
LabJack is ready.

In a future driver release, this function might be given an additional parameter that determines
the type of reset.

Declaration:
LJ_ERROR _stdcall ResetLabJack (LJ_HANDLE Handle);

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().

 63

Outputs:
• None

4.2.17 eAIN()
An “easy” function that returns a reading from one analog input. This is a simple alternative to
the very flexible IOType based method normally used by this driver.

When needed, this function automatically configures the specified channel(s) for analog input.

Declaration:
LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,

long ChannelP,
long ChannelN,
double *Voltage,
long Range,
long Resolution,
long Settling,
long Binary,
long Reserved1,
long Reserved2)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• ChannelP – The positive AIN channel to acquire.
• ChannelN – The negative AIN channel to acquire. For the UE9, this parameter

is ignored. For single-ended channels on the U3, this parameter should be 31
(see Section 2.6.1).

• Range – See the header file for input range constants.
• Resolution – Pass 12-17 to specify the resolution of the analog input reading,

and 18 for a high-res reading from the UE9-Pro. 0-11 corresponds to 12-bit.
• Settling – Pass 0 for the default settling. This parameter adds extra settling

before the ADC conversion of about Settling times 5 microseconds.
• Binary – If this is nonzero (True), the Voltage parameter will return the raw

binary value.
• Reserved (1&2) – Pass 0.

Outputs:
• Voltage – Returns the analog input reading, which is generally a voltage.

4.2.18 eDAC()
An “easy” function that writes a value to one analog output. This is a simple alternative to the
very flexible IOType based method normally used by this driver.

When needed, this function automatically enables the specified analog output.

Declaration:

 64

LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,
long Channel,
double Voltage,
long Binary,
long Reserved1,
long Reserved2)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• Channel – The analog output channel to write to.
• Voltage – The voltage to write to the analog output.
• Binary – If this is nonzero (True), the value passed for Voltage should be binary.
• Reserved (1&2) – Pass 0.

4.2.19 eDI()
An “easy” function that reads the state of one digital input. This is a simple alternative to the
very flexible IOType based method normally used by this driver.

When needed, this function automatically configures the specified channel as a digital input.

Declaration:
LJ_ERROR _stdcall eDI (LJ_HANDLE Handle,

long Channel,
long *State)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• Channel – The channel to read. 0-22 corresponds to FIO0-MIO2.

Outputs:
• State – Returns the state of the digital input. 0=False=Low and 1=True=High.

4.2.20 eDO()
An “easy” function that writes the state of one digital output. This is a simple alternative to the
very flexible IOType based method normally used by this driver.

When needed, this function automatically configures the specified channel as a digital output.

Declaration:
LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,

long Channel,
long State)

 65

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• Channel – The channel to write to. 0-22 corresponds to FIO0-MIO2.
• State – The state to write to the digital output. 0=False=Low and 1=True=High.

4.2.21 eTCConfig()
An “easy” function that configures and initializes all the timers and counters. This is a simple
alternative to the very flexible IOType based method normally used by this driver.

When needed, this function automatically configures the needed lines as digital.

Declaration:
LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,

long *aEnableTimers,
long *aEnableCounters,
long TCPinOffset,
long TimerClockBaseIndex,
long TimerClockDivisor,
long *aTimerModes,
double *aTimerValues,
long Reserved1,
long Reserved2)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• aEnableTimers – An array where each element specifies whether that timer is

enabled. Timers must be enabled in order starting from 0, so for instance,
Timer0 and Timer2 cannot be enabled without enabling Timer1 also. A nonzero
value for an array element specifies to enable that timer. For the UE9, this array
must always have at least 6 elements.

• aEnableCounters – An array where each element specifies whether that counter
is enabled. Counters do not have to be enabled in order starting from 0, so
Counter1 can be enabled when Counter0 is disabled. A nonzero value for an
array element specifies to enable that counter. For the UE9, this array must
always have at least 2 elements.

• TCPinOffset – Ignored with the UE9.
• TimerClockBaseIndex – Pass a constant to set the timer base clock. The

default is LJ_tc750KHZ.
• TimerClockDivisor – Pass a divisor from 0-255 where 0 is a divisor of 256.
• aTimerModes – An array where each element is a constant specifying the mode

for that timer. For the UE9, this array must always have at least 6 elements.
• aTimerValues – An array where each element is specifies the initial value for

that timer. For the UE9, this array must always have at least 6 elements.
• Reserved (1&2) – Pass 0.

 66

4.2.22 eTCValues()
An “easy” function that updates and reads all the timers and counters. This is a simple
alternative to the very flexible IOType based method normally used by this driver.

Declaration:
LJ_ERROR _stdcall eGet (LJ_HANDLE Handle,

long *aReadTimers,
long *aUpdateResetTimers,
long *aReadCounters,
long *aResetCounters,
double *aTimerValues,
double *aCounterValues,
long Reserved1,
long Reserved2)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• aReadTimers – An array where each element specifies whether to read that

timer. A nonzero value for an array element specifies to read that timer. For the
UE9, this array must always have at least 6 elements.

• aUpdateResetTimers – An array where each element specifies whether to
update/reset that timer. A nonzero value for an array element specifies to
update/reset that timer. For the UE9, this array must always have at least 6
elements.

• aReadCounters – An array where each element specifies whether to read that
counter. A nonzero value for an array element specifies to read that counter.
For the UE9, this array must always have at least 2 elements.

• aResetCounters – An array where each element specifies whether to reset that
counter. A nonzero value for an array element specifies to reset that counter.
For the UE9, this array must always have at least 2 elements.

• aTimerValues – An array where each element is the new value for that timer.
Each value is only updated if the appropriate element is set in the
aUpdateResetTimers array. For the UE9, this array must always have at least 6
elements.

• Reserved (1&2) – Pass 0.
Outputs:

• aTimerValues – An array where each element is the value read from that timer if
the appropriate element is set in the aReadTimers array.

• aCounterValues – An array where each element is the value read from that
counter if the appropriate element is set in the aReadCounters array.

 67

4.3 Example Pseudocode
The following pseudocode examples are simplified for clarity, and in particular no error checking
is shown. The language used for the pseudocode is C.

4.3.1 Open
The initial step is to open the LabJack and get a handle that the driver uses for further
interaction. The DeviceType for the UE9 is:

LJ_dtUE9

There are two choices for ConnectionType for the UE9:

LJ_ctUSB
LJ_ctETHERNET

Following is example pseudocode to open a UE9 over USB:

//Open the first found LabJack UE9 over USB.
OpenLabJack (LJ_dtUE9, LJ_ctUSB, "1", 1, &lngHandle);

Following is example pseudocode to open a UE9 over Ethernet:

//Open a specified LabJack UE9 over Ethernet.
OpenLabJack (LJ_dtUE9, LJ_ctETHERNET, "192.168.1.209", 0, &lngHandle);

The reason for the quotes around the address is because the address parameter is a string in
the OpenLabJack function.

The ampersand (&) in front of lngHandle is a C notation that means we are passing the address
of that variable, rather than the value of that variable. In the definition of the OpenLabJack
function, the handle parameter is defined with an asterisk (*) in front, meaning that the function
expects a pointer, i.e. an address.

In general, a function parameter is passed as a pointer (address) rather than a value, when the
parameter might need to output something. The parameter value passed to a function in C
cannot be modified in the function, but the parameter can be an address that points to a value
that can be changed. Pointers are also used when passing arrays, as rather than actually
passing the array, an address to the first element in the array is passed.

4.3.2 Configuration
There are two IOTypes used to write or read UE9 configuration parameters:

LJ_ioPUT_CONFIG
LJ_ioGET_CONFIG

The following constants are then used in the channel parameter of the config function call to
specify what is being written or read:

LJ_chLOCALID
LJ_chHARDWARE_VERSION
LJ_chSERIAL_NUMBER
LJ_chCOMM_POWER_LEVEL
LJ_chIP_ADDRESS
LJ_chGATEWAY

 68

LJ_chSUBNET
LJ_chPORTA
LJ_chPORTB
LJ_chDHCP
LJ_chPRODUCTID
LJ_chMACADDRESS
LJ_chCOMM_FIRMWARE_VERSION
LJ_chCONTROL_POWER_LEVEL
LJ_chCONTROL_FIRMWARE_VERSION
LJ_chCONTROL_BOOTLOADER_VERSION
LJ_chCONTROL_RESET_SOURCE

More information about these parameters can be found in documentation for the low-level
CommConfig and ControlConfig functions.

Following is example pseudocode to write and read the IP address:

//Convert an address string in dot notation to a double.
//The general form of the StringToDoubleAddress function is:
//StringToDoubleAddress (String, *Number, HexDot)
StringToDoubleAddress (“192.168.1.210”, &dblAddress, 0);

//Write a new IP address. Like all Ethernet parameters, this
//will not take effect until the UE9 is reset.
ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chIP_ADDRESS, dblAddress, 0);

//Read the current IP address.
eGet (lngHandle, LJ_ioGET_CONFIG, LJ_chIP_ADDRESS, &dblAddress, 0);

//Convert a double to an address string in dot notation.
//The general form of the DoubleToStringAddress function is:
//DoubleToStringAddress (Number, *String, HexDot)
DoubleToStringAddress (dblAddress, strIPAddress, 0);

4.3.3 Analog Inputs
The IOType to retrieve a command/response analog input reading is:

LJ_ioGET_AIN

The following are IOTypes used to configure (or read) the input range of a particular analog
input channel:

LJ_ioPUT_AIN_RANGE
LJ_ioGET_AIN_RANGE

In addition to specifying the channel number, the following range constants are passed in the
value parameter when doing a request with the AIN range IOType:

LJ_rgUNI5V // 0-5 V, LabJackUD Default
LJ_rgUNI2P5V // 0-2.5 V (not supported on UE9-Pro)
LJ_rgUNI1P25V // 0-1.25 V (not supported on UE9-Pro)
LJ_rgUNIP625V // 0-0.625 V (not supported on UE9-Pro)
LJ_rgBIP5V // +/- 5 V

The following are special channels, used with the get/put config IOTypes, to configure
parameters that apply to all analog inputs:

LJ_chAIN_RESOLUTION
LJ_chAIN_SETTLING_TIME

 69

LJ_chAIN_BINARY

Following is example pseudocode to configure and read two analog inputs:

//Configure all analog inputs for 14-bit resolution. Like most
//settings, this will apply to all further measurements until
//the parameter is changed or the DLL unloaded.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chAIN_RESOLUTION, 14, 0, 0);

//Configure AIN2 for +/- 5 volt range.
AddRequest (lngHandle, LJ_ioPUT_AIN_RANGE, 2, LJ_rgBIP5V, 0, 0);

//Configure AIN3 for +/- 5 volt range.
AddRequest (lngHandle, LJ_ioPUT_AIN_RANGE, 3, LJ_rgBIP5V, 0, 0);

//Request a read from AIN2.
AddRequest (lngHandle, LJ_ioGET_AIN, 2, 0, 0, 0);

//Request a read from AIN3.
AddRequest (lngHandle, LJ_ioGET_AIN, 3, 0, 0, 0);

//Execute the requests.
GoOne (lngHandle);

//Get the AIN2 voltage.
GetResult (lngHandle, LJ_ioGET_AIN, 2, &dblValue);

//Get the AIN3 voltage.
GetResult (lngHandle, LJ_ioGET_AIN, 3, &dblValue);

4.3.4 Analog Outputs
The IOType to set the voltage on an analog output is:

LJ_ioPUT_DAC

The following are IOTypes used to write/read the enable bit for each DAC. Note that although
there is an enable bit for each DAC on the UE9, both DACs are enabled or disabled at the same
time:

LJ_ioPUT_DAC_ENABLE //Applies to both DACs. Channel # ignored.
LJ_ioGET_DAC_ENABLE //Applies to both DACs. Channel # ignored.

The following is a special channel, used with the get/put config IOTypes, to configure a
parameter that applies to both DACs:

LJ_chDAC_BINARY

Following is example pseudocode to set DAC1 to 2.5 volts:

//Set DAC1 to 2.5 volts.
ePut (lngHandle, LJ_ioPUT_DAC, 1, 2.50, 0);

4.3.5 Digital I/O
There are eight IOTypes used to write or read digital I/O information:

LJ_ioGET_DIGITAL_BIT //Also sets direction to input.

 70

LJ_ioGET_DIGITAL_BIT_DIR
LJ_ioGET_DIGITAL_BIT_STATE
LJ_ioGET_DIGITAL_PORT //Also sets directions to input. x1 is number of bits.
LJ_ioGET_DIGITAL_PORT_DIR //x1 is number of bits.
LJ_ioGET_DIGITAL_PORT_STATE //x1 is number of bits.

LJ_ioPUT_DIGITAL_BIT //Also sets direction to output.
LJ_ioPUT_DIGITAL_PORT //Also sets directions to output. x1 is number of bits.

When a request is done with one of the port IOTypes, the Channel parameter is used to specify
the starting bit number, and the x1 parameter is used to specify the number of applicable bits.
The bit numbers corresponding to different I/O are:

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3
20-22 MIO0-MIO2

Note that the GetResult function does not have an x1 parameter. That means that if two (or
more) port requests are added with the same IOType and Channel, but different x1, the result
retrieved by GetResult would be undefined. The GetFirstResult/GetNextResult commands do
have the x1 parameter, and thus can handle retrieving responses from multiple port requests
with the same IOType and Channel.

Following is example pseudocode for various digital I/O operations:

//Request a read from FIO2.
AddRequest (lngHandle, LJ_ioGET_DIGITAL_BIT, 2, 0, 0, 0);

//Request a read from EIO0-CIO1 (10-bits starting
//from digital channel #8).
AddRequest (lngHandle, LJ_ioGET_DIGITAL_PORT, 8, 0, 10, 0);

//Set FIO3 to output-high.
AddRequest (lngHandle, LJ_ioPUT_DIGITAL_BIT, 3, 1, 0, 0);

//Set CIO2-MIO2 (5-bits starting from digital channel #18)
//to b10100 (=d20). That is CIO2=0, CIO3=0, MIO0=1,
//MIO1=0, and MIO2=1.
AddRequest (lngHandle, LJ_ioPUT_DIGITAL_PORT, 18, 20, 5, 0);

//Execute the requests.
GoOne (lngHandle);

//Get the FIO2 read.
GetResult (lngHandle, LJ_ioGET_DIGITAL_BIT, 2, &dblValue);

//Get the EIO0-CIO1 read.
GetResult (lngHandle, LJ_ioGET_DIGITAL_PORT, 8, &dblValue);

4.3.6 Timers & Counters
There are eight IOTypes used to write or read timer and counter information:

LJ_ioGET_COUNTER
LJ_ioPUT_COUNTER_ENABLE //UpdateConfig will be set.
LJ_ioGET_COUNTER_ENABLE
LJ_ioPUT_COUNTER_RESET

 71

LJ_ioGET_TIMER
LJ_ioPUT_TIMER_VALUE
LJ_ioPUT_TIMER_MODE //UpdateConfig will be set.
LJ_ioGET_TIMER_MODE

In addition to specifying the channel number, the following mode constants are passed in the
value parameter when doing a request with the timer mode IOType:

LJ_tmPWM16 //16-bit PWM output
LJ_tmPWM8 //8-bit PWM output
LJ_tmRISINGEDGES32 //Period input (32-bit, rising edges)
LJ_tmFALLINGEDGES32 //Period input (32-bit, falling edges)
LJ_tmDUTYCYCLE //Duty cycle input
LJ_tmFIRMCOUNTER //Firmware counter input
LJ_tmFIRMCOUNTERDEBOUNCE //Firmware counter input (with debounce)
LJ_tmFREQOUT //Frequency output
LJ_tmQUAD //Quadrature input
LJ_tmTIMERSTOP //Timer stop input (odd timers only)
LJ_tmSYSTIMERLOW //System timer low read (no FIO)
LJ_tmSYSTIMERHIGH //System timer high read (no FIO)
LJ_tmRISINGEDGES16 //Period input (16-bit, rising edges)
LJ_tmFALLINGEDGES16 //Period input (16-bit, falling edges)

The following are special channels, used with the get/put config IOTypes, to configure a
parameter that applies to all timers/counters:

LJ_chNUMBER_TIMERS_ENABLED //UpdateConfig will be set if writing.
LJ_chTIMER_CLOCK_BASE //UpdateConfig will be set if writing.
LJ_chTIMER_CLOCK_DIVISOR //UpdateConfig will be set if writing.

With the clock base special channel above, the following constants are passed in the value
parameter to select the frequency:

LJ_tc750KHZ //Fixed 750 kHz clock base.
LJ_tcSYS //System clock: 48 MHz.

Following is example pseudocode for configuring various timers and a hardware counter:

//First, an add/go/get block to configure the timers and counters.

//Enable all 6 timers. Timer0-Timer5 will appear on FIO0-FIO5.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 6, 0, 0);

//Enable Counter0. It will use the next available line, FIO6.
AddRequest (lngHandle, LJ_ioPUT_COUNTER_ENABLE, 0, 1, 0, 0);

//All output timers use the same timer clock, which is
//determined by the base clock divided by the clock divisor.
//Set the timer clock base to 48 MHz.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0);

//Set the timer clock divisor to 48, creating a 1 MHz timer clock.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0);

//Configure Timer0 as 8-bit PWM. It will have a frequency
//of 1M/256 = 3906.25 Hz.
AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 0, LJ_tmPWM8, 0, 0);

//Initialize the 8-bit PWM with a 50% duty cycle.
AddRequest (lngHandle, LJ_ioPUT_TIMER_VALUE, 0, 32768, 0, 0);

//Configure Timer1 as frequency output.

 72

AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 1, LJ_tmFREQOUT, 0, 0);

//Initialize frequency output at 1M/(2*5) = 100 kHz.
AddRequest (lngHandle, LJ_ioPUT_TIMER_VALUE, 1, 5, 0, 0);

//Configure Timer2 as a firmware counter with debounce.
AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 2, LJ_tmFIRMCOUNTERDEBOUNCE, 0, 0);

//Configure Timer2 for negative edges (bit 8 of value clear) with
//a debounce period of 87 ms.
AddRequest (lngHandle, LJ_ioPUT_TIMER_VALUE, 2, 1, 0, 0);

//Configure Timer3 as duty cycle input.
AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 3, LJ_tmDUTYCYCLE, 0, 0);

//Configure Timers 4 & 5 as quadrature input. Two timers
//are needed for phases A & B.
AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 4, LJ_tmQUAD, 0, 0);
AddRequest (lngHandle, LJ_ioPUT_TIMER_MODE, 5, LJ_tmQUAD, 0, 0);

//Execute the requests.
GoOne (lngHandle);

The LabJackUD driver uses the low-level TimerCounter function. That function has a single
UpdateConfig bit that must be set to change modes, clock configuration, or enabled/disabled
status. When the UpdateConfig bit is set, all timers and counters are re-initialized. The
following pseudocode demonstrates reading input timers/counters and updating the values of
output timers, which does not cause the UpdateConfig bit to be set. The e-functions are used in
the following pseudocode, but some applications might combine the following calls into a single
add/go/get block so that a single low-level call is used.

//Change Timer0 PWM duty cycle to 25%.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 0, 49152, 0);

//Change Timer1 frequency output to 1M/(2*50) = 10 kHz.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 1, 50, 0);

//Read count from Timer2. This is an unsigned 32-bit value.
eGet (lngHandle, LJ_ioGET_TIMER, 2, &dblValue, 0);

//Read duty-cycle from Timer3.
eGet (lngHandle, LJ_ioGET_TIMER, 3, &dblValue, 0);

//The duty cycle read returns a 32-bit value where the
//least significant word (LSW) represents the high time
//and the most significant word (MSW) represents the low
//time. The times returned are the number of cycles of
//the timer clock. In this case the timer clock was set
//to 1 MHz, so each cycle is 1 microsecond.
dblHighCycles = (double)(((unsigned long)dblValue) % (65536));
dblLowCycles = (double)(((unsigned long)dblValue) / (65536));
dblDutyCycle = 100 * dblHighCycles / (dblHighCycles + dblLowCycles));
dblHighTime = 0.000001 * dblHighCycles;
dblLowTime = 0.000001 * dblLowCycles;

//Read the quadrature count from Timer4. Timer5 would return the
//same value. This is a signed 32-bit value.
eGet (lngHandle, LJ_ioGET_TIMER, 4, &dblValue, 0);

//Read the count from Counter0. This is an unsigned 32-bit value.
eGet (lngHandle, LJ_ioGET_COUNTER, 0, &dblValue, 0);

 73

Following is pseudocode to reset the input timers and the counter:

//Reset the firmware counter (Timer2) to zero, by writing a
//value of zero.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 2, 0, 0);

//Reset the duty-cycle measurement (Timer3) to zero, by writing
//a value of zero. The duty-cycle measurement is continuously
//updated, so a reset is normally not needed, but one reason
//to reset to zero is to detect whether there has been a new
//measurement or not.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 3, 0, 0);

//Reset the quadrature counters (Timer4 & Timer5) to zero, by
//writing a value of zero to either one.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 4, 0, 0);

//Reset Counter0 to zero.
ePut (lngHandle, LJ_ioPUT_COUNTER_RESET, 0, 1, 0);

Note that if a timer/counter is read and reset at the same time (in the same Add/Go/Get block),
the read will return the value just before reset.

4.3.7 Stream Mode
There are five IOTypes used to control streaming:

LJ_ioCLEAR_STREAM_CHANNELS
LJ_ioADD_STREAM_CHANNEL
LJ_ioSTART_STREAM //Value returns actual scan rate.
LJ_ioSTOP_STREAM
LJ_ioGET_STREAM_DATA

The following constant is passed in the Channel parameter with the get stream data IOType to
specify a read returning all scanned channels, rather than retrieving each scanned channel
separately:

LJ_chALL_CHANNELS

The following are special channels, used with the get/put config IOTypes, to write or read
various stream values:

LJ_chSTREAM_SCAN_FREQUENCY
LJ_chSTREAM_BUFFER_SIZE //UD driver stream buffer size in samples.
LJ_chSTREAM_CLOCK_OUTPUT //True/False. See Section 3.2.1.
LJ_chSTREAM_EXTERNAL_TRIGGER //True/False. See Section 3.2.1.
LJ_chSTREAM_WAIT_MODE
LJ_chSTREAM_BACKLOG_COMM //Read-only. 0=0% and 128=100%.
LJ_chSTREAM_BACKLOG_CONTROL //Read-only. Number of samples.
LJ_chSTREAM_BACKLOG_UD //Read-only. Number of samples.
LJ_chSTREAM_SAMPLES_PER_PACKET //Read-only. Always 16.
LJ_chSTREAM_READS_PER_SECOND //Default 25.

With the wait mode special channel above, the following constants are passed in the value
parameter to select the behavior when reading data:

LJ_swNONE //No wait. Immediately return available data.
LJ_swALL_OR_NONE //No wait. Immediately return requested amount, or none.
LJ_swPUMP //Advance message pump wait mode.

 74

LJ_swSLEEP //Wait until requested amount available.

The backlog special channels return information about how much data is left in the hardware
stream buffers on the UE9. These parameters are updated whenever a stream packet is read
by the driver, and thus might not exactly reflect the current state of the buffers, but can be useful
to detect problems.

When streaming, the Control processor acquires data at precise intervals, and transfers it to the
Comm processor which has a large data buffer. The Control processor has a small data buffer
(256 samples) for data waiting to be transferred to the Comm processor, and the
LJ_chSTREAM_BACKLOG_CONTROL special channel specifies the number of samples remaining in the
Control buffer. If this parameter is nonzero and growing, it suggests that the Control processor
is too busy. Because the Control buffer is so small, overflows very quickly, and generally only
overflows if sampling faster than the specified rates, this parameter is not often used.

The Comm processor holds stream data in a 4 Mbit FIFO buffer (512 kBytes, 11397
StreamData packets, 182361 samples) until it can be sent to the host. The lower 7 bits of the
LJ_chSTREAM_BACKLOG_COMM special channel specify how much data is left in the Comm buffer in
increments of 4096 bytes. A value of 0 means the buffer is empty and a value of 128 (or higher)
means the buffer has overflowed. The UD driver retrieves stream data from the UE9 in the
background, but if the computer or communication link is too slow for some reason, the driver
might not be able to read the data as fast as the UE9 is acquiring it, and thus there will be data
left over in the UE9 buffer.

To obtain the maximum stream rates documented in Section 3.2, the data must be transferred
between host and UE9 in large chunks. The amount of data transferred per low-level packet is
controlled by LJ_chSTREAM_SAMPLES_PER_PACKET . The driver will use the parameter
LJ_chSTREAM_READS_PER_SECOND to determine how many low-level packets to retrieve per read.

The size of the UD stream buffer on the host is controlled by LJ_chSTREAM_BUFFER_SIZE . The
application software on the host must read data out of the UD stream buffer fast enough to
prevent overflow. After each read, use LJ_chSTREAM_BACKLOG_UD to determine how many
samples are left in the buffer.

In stream mode the LabJack acquires inputs at a fixed interval, controlled by the hardware clock
on the device itself, and stores the data in a buffer. The LabJackUD driver automatically reads
data from the hardware buffer and stores it in a PC RAM buffer until requested. The general
procedure for streaming is:

• Update configuration parameters.
• Build the scan list.
• Start the stream.
• Periodically retrieve stream data in a loop.
• Stop the stream.

Following is example pseudocode to configure a 2-channel stream. In addition to the stream
parameters configured below, some applications might also need to configure analog input
settings such as range and resolution:

//Set the scan rate.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chSTREAM_SCAN_FREQUENCY, scanRate, 0, 0);

 75

//Give the UD driver a 5 second buffer (scanRate * 2 channels * 5 seconds).
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chSTREAM_BUFFER_SIZE, scanRate*2*5, 0, 0);

//Configure reads to wait and retrieve the desired amount of data.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chSTREAM_WAIT_MODE, LJ_swSLEEP, 0, 0);

//Define the scan list as AIN2 then AIN3.
AddRequest (lngHandle, LJ_ioCLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
AddRequest (lngHandle, LJ_ioADD_STREAM_CHANNEL, 2, 0, 0, 0);
AddRequest (lngHandle, LJ_ioADD_STREAM_CHANNEL, 3, 0, 0, 0);

//Execute the requests.
GoOne (lngHandle);

Next, start the stream:

//Start the stream.
eGet(lngHandle, LJ_ioSTART_STREAM, 0, &dblValue, 0);

//The actual scan rate is dependent on how the desired scan rate divides into
//the LabJack clock. The actual scan rate is returned in the value parameter
//from the start stream command.
actualScanRate = dblValue;
actualSampleRate = 2*dblValue;

Once a stream is started, the data must be retrieved periodically to prevent the buffer from
overflowing. To retrieve data, add a request with IOType LJ_ioGET_STREAM_DATA. The Channel
parameter should be LJ_chALL_CHANNELS or a specific channel number (ignored for a single
channel stream). The Value parameter should be the number of scans (all channels) or
samples (single channel) to retrieve. The x1 parameter should be a pointer to an array that has
been initialized to a sufficient size. Keep in mind that the required number of elements if
retrieving all channels is number of scans * number of channels.

Data is stored interleaved across all streaming channels. In other words, if two channels are
streaming, 0 and 1, and LJ_chALL_CHANNELS is the channel number for the read request, the data
will be returned as Channel0, Channel1, Channel0, Channel1, etc. Once the data is read it is
removed from the internal buffer, and the next read will give new data.

If multiple channels are being streamed, data can be retrieved one channel at a time by passing
a specific channel number in the request. In this case the data is not removed from the internal
buffer until the last channel in the scan is requested. Reading the data from the last channel
(not necessarily all channels) is the trigger that causes the block of data to be removed from the
buffer. This means that if three channels are streaming, 0, 1 and 2 (in that order in the scan
list), and data is requested from channel 0, then channel 1, then channel 0 again, the request
for channel 0 the second time will return the same data as the first request. New data will not
be retrieved until after channel 2 is read, since channel 2 is last in the scan list. If the first get
stream data request is for 10 samples from channel 1, the reads from channels 0 and 2 also
must be for 10 samples. Note that when reading stream data one channel at a time (not using
LJ_chALL_CHANNELS), the scan list cannot have duplicate channel numbers.

There are three basic wait modes for retrieving the data:

• LJ_swNONE: The Go call will retrieve whatever data is available at the time of the call
up to the requested amount of data. A Get command should be called to determine how

 76

many scans were retrieved. This is generally used with a software timed read interval.
The number of samples read per loop iteration will vary, but the time per loop iteration
will be pretty consistent. Since the LabJack clock could be faster than the PC clock, it is
recommended to request more scans than are expected each time so that the
application does not get behind.

• LJ_swSLEEP: This makes the Go command a blocking call. The Go command will loop
until the requested amount of is retrieved or no new data arrives from the device before
timeout. In this mode, the hardware dictates the timing of the application. The time per
loop iteration will vary, but the number of samples read per loop will be the same every
time. A Get command should be called to determine whether all the data was retrieved,
or a timeout condition occurred and none of the data was retrieved.

• LJ_swALL_OR_NONE: If available, the Go call will retrieve the amount of data
requested, otherwise it will retrieve no data. A Get command should be called to
determine whether all the data was returned or none. This could be a good mode if
hardware timed execution is desirable, but without the application continuously waiting in
SLEEP mode.

The following pseudocode reads data continuously in SLEEP mode as configured above:

//Read data until done.
while(!done)
{
 //Must set the number of scans to read each iteration, as the read
 //returns the actual number read.
 numScans = 1000;

 //Read the data. Note that the array passed must be sized to hold

//enough SAMPLES, and the Value passed specifies the number of SCANS
//to read.

 eGet(lngHandle, LJ_ioGET_STREAM_DATA, LJ_chALL_CHANNELS, &numScans, array);
 actualNumberRead = numScans;

 //When all channels are retrieved in a single read, the data

//is interleaved in a 1-dimensional array. The following lines
//get the first sample from each channel.
channelA = array[0];
channelB = array[1];

 //Retrieve the current Comm backlog. The UD driver retrieves
//stream data from the UE9 in the background, but if the computer
//is too slow for some reason the driver might not be able to read
//the data as fast as the UE9 is acquiring it, and thus there will
//be data left over in the UE9 buffer.

 eGet(lngHandle, LJ_ioGET_CONFIG, LJ_chSTREAM_BACKLOG_COMM, &dblCommBacklog, 0);

//Retrieve the current UD driver backlog. If this is growing, then
//the application software is not pulling data from the UD driver
//fast enough.
eGet(lngHandle, LJ_ioGET_CONFIG, LJ_chSTREAM_BACKLOG_UD, &dblUDBacklog, 0);

}

Finally, stop the stream:

//Stop the stream.
errorcode = ePut (Handle, LJ_ioSTOP_STREAM, 0, 0, 0);

 77

4.3.8 Raw Output/Input
There are two IOTypes used to write or read raw data. These can be used to make low-level
function calls (Section 5) through the UD driver. The only time these generally might be used is
to access some low-level device functionality not available in the UD driver.

LJ_ioRAW_OUT
LJ_ioRAW_IN

When using these IOTypes, channel # specifies the desired communication pipe. For the UE9,
0 is the normal pipe while 1 is the streaming pipe. The number of bytes to write/read is
specified in value (1-512), and x1 is a pointer to a byte array for the data. When retrieving the
result, the value returned is the number of bytes actually read/written.

Following is example pseudocode to write and read the simple low-level echo command. This
is the simplest UE9 command and consists simply of a write of 2 bytes (0x70, 0x70) and a read
of the same two bytes.

writeArray[2] = {0x70,0x70};
numBytesToWrite = 2;
numBytesToRead = 2;

//Raw Out. This command writes the bytes to the device.
eGet(lngHandle, LJ_ioRAW_OUT, 0, &numBytesToWrite, pwriteArray);

//Raw In. This command reads the bytes from the device.
eGet(lngHandle, LJ_ioRAW_IN, 0, &numBytesToRead, preadArray);

4.3.9 Easy Functions
The easy functions are simple alternatives to the very flexible IOType based method normally
used by this driver. There are 6 functions available:

eAIN() //Read 1 analog input.
eDAC() //Write to 1 analog output.
eDI() //Read 1 digital input.
eDO() //Write to 1 digital output.
eTCConfig() //Configure all timers and counters.
eTCValues() //Update/reset and read all timers and counters.

In addition to the basic operations, these functions also automatically handle configuration as
needed. For example, eDO() sets the specified line to output if previously configured as input.

The first 4 functions should not be used when speed is critical with multi-channel reads. These
functions use one low-level function per operation, whereas using the normal Add/Go/Get
method with IOTypes, many operations can be combined into a single low-level call. With
single channel operations, however, there will be little difference between using an easy
function or Add/Go/Get.

The last two functions handle almost all functionality related to timers and counters, and will
usually be as efficient as any other method. These easy functions are recommended for most
timer/counter applications.

Following is example pseudocode:

//Take a measurement from AIN3 using 0-5 volt range and 12-bit resolution.
//eAIN (Handle, ChannelP, ChannelN, *Voltage, Range, Resolution,
// Settling, Binary, Reserved1, Reserved2)

 78

//
eAIN(lngHandle, 3, 0, &dblVoltage, LJ_rgUNI5V, 12, 0, 0, 0, 0);
printf("AIN3 value = %.3f\n",dblVoltage);

//Set DAC0 to 3.1 volts.
//eDAC (Handle, Channel, Voltage, Binary, Reserved1, Reserved2)
//
eDAC(lngHandle, 0, 3.1, 0, 0, 0);

//Read state of FIO2.
//eDI (Handle, Channel, *State)
//
eDI(lngHandle, 2, &lngState);
printf("FIO2 state = %.0f\n",lngState);

//Set FIO3 to output-high.
//eDO (Handle, Channel, State)
//
eDO(lngHandle, 3, 1);

//Enable and configure 1 output timer and 1 input timer, and enable Counter0.
//Fill the arrays with the desired values, then make the call.
alngEnableTimers = {1,1,0,0,0,0}; //Enable Timer0-Timer1
alngTimerModes = {LJ_tmPWM8,LJ_tmRISINGEDGES32,0,0,0,0}; //Set timer modes
adblTimerValues = {16384,0,0,0,0,0}; //Set PWM8 duty-cycle to 75%.
alngEnableCounters = {1,0}; //Enable Counter0
//
//eTCConfig (Handle, *aEnableTimers, *aEnableCounters, TCPinOffset,
// TimerClockBaseIndex, TimerClockDivisor, *aTimerModes,
// *aTimerValues, Reserved1, Reserved2);
//
eTCConfig(lngHandle, alngEnableTimers, alngEnableCounters, 0, LJ_tc750KHZ, 3,
alngTimerModes, adblTimerValues, 0, 0);

//Read and reset the input timer (Timer1), read and reset Counter0, and update
//the value (duty-cycle) of the output timer (Timer0).
//Fill the arrays with the desired values, then make the call.
alngReadTimers = {0,1,0,0,0,0}; //Read Timer1
alngUpdateResetTimers = {1,1,0,0,0,0}; //Update Timer0 and reset Timer1
alngReadCounters = {1,0}; //Read Counter0
alngResetCounters = {1,0}; //Reset Counter0
adblTimerValues = {32768,0,0,0,0,0}; //Change Timer0 duty-cycle to 50%
//
//eTCValues (Handle, *aReadTimers, *aUpdateResetTimers, *aReadCounters,
// *aResetCounters, *aTimerValues, *aCounterValues, Reserved1,
// Reserved2);
//
eTCValues(lngHandle, alngReadTimers, alngUpdateResetTimers, alngReadCounters,
alngResetCounters, adblTimerValues, adblCounterValues, 0, 0);
printf("Timer1 value = %.0f\n",adblTimerValues[1]);
printf("Counter0 value = %.0f\n",adblCounterValues[0]);

4.3.10 SPI Serial Communication
The UE9 supports Serial Peripheral Interface (SPI) communication as the master only. SPI is a
synchronous serial protocol typically used to communicate with chips that support SPI as slave
devices.

This serial link is not an alternative to the USB connection. Rather, the host application will
write/read data to/from the UE9 over USB, and the USB communicates with some other device

 79

using the serial protocol. Using this serial protocol is considered an advanced topic. A good
knowledge of the protocol is recommended, and a logic analyzer or oscilloscope might be
needed for troubleshooting.

There is one IOType used to write/read data over the SPI bus:

LJ_ioSPI_COMMUNICATION // Value= number of bytes (1-240). x1= array.

The following are special channels, used with the get/put config IOTypes, to configure various
parameters related to the SPI bus. See the low-level function description in Section 5.3.16 for
more information about these parameters:

LJ_chSPI_AUTO_CS
LJ_chSPI_DISABLE_DIR_CONFIG
LJ_chSPI_MODE
LJ_chSPI_CLOCK_FACTOR
LJ_chSPI_MOSI_PIN_NUM
LJ_chSPI_MISO_PIN_NUM
LJ_chSPI_CLK_PIN_NUM
LJ_chSPI_CS_PIN_NUM

Following is example pseudocode to configure SPI communication:

//First, configure the SPI communication.

//Enable automatic chip-select control.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_AUTO_CS,1,0,0);

//Do not disable automatic digital i/o direction configuration.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_DISABLE_DIR_CONFIG,0,0,0);

//Mode A: CPHA=1, CPOL=1.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_MODE,0,0,0);

//Maximum clock rate (~100kHz).
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CLOCK_FACTOR,0,0,0);

//Set MOSI to FIO2.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_MOSI_PIN_NUM,2,0,0);

//Set MISO to FIO3.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_MISO_PIN_NUM,3,0,0);

//Set CLK to FIO0.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CLK_PIN_NUM,0,0,0);

//Set CS to FIO1.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CS_PIN_NUM,1,0,0);

//Execute the configuration requests.
GoOne(lngHandle);

Following is pseudocode to do the actual SPI communication:

//Transfer the data.
eGet(lngHandle, LJ_ioSPI_COMMUNICATION, 0, &numBytesToTransfer, array);

4.3.11 I2C Serial Communication
The UE9 supports Inter-Integrated Circuit (I2C or I2C) communication as the master only. I2C is
a synchronous serial protocol typically used to communicate with chips that support I2C as slave

 80

devices. Any 2 digital I/O lines are used for SDA and SCL. Note that the I2C bus generally
requires pull-up resistors of perhaps 4.7 kΩ from SDA to Vs and SCL to Vs, and also note that
the screw terminals labeled SDA and SCL (if present) are not used for I2C.

This serial link is not an alternative to the USB connection. Rather, the host application will
write/read data to/from the UE9 over USB, and the USB communicates with some other device
using the serial protocol. Using this serial protocol is considered an advanced topic. A good
knowledge of the protocol is recommended, and a logic analyzer or oscilloscope might be
needed for troubleshooting.

There is one IOType used to write/read I2C data:

LJ_ioI2C_COMMUNICATION

The following are special channels used with the I2C IOType above:

LJ_chI2C_READ // Value= number of bytes (0-240). x1= array.
LJ_chI2C_WRITE // Value= number of bytes (0-240). x1= array.
LJ_chI2C_GET_ACKS

The following are special channels, used with the get/put config IOTypes, to configure various
parameters related to the I2C bus. See the low-level function description in Section 5.3.20 for
more information about these parameters:

LJ_chI2C_ADDRESS_BYTE
LJ_chI2C_SCL_PIN_NUM // 0-22. Pull-up resistor usually required.
LJ_chI2C_SDA_PIN_NUM // 0-22. Pull-up resistor usually required.
LJ_chI2C_OPTIONS
LJ_chI2C_SPEED_ADJUST

The LJTick-DAC is an accessory from LabJack with an I2C 24C01C EEPROM chip. Following
is example pseudocode to configure I2C to talk to that chip:

//The AddressByte of the EEPROM on the LJTick-DAC is 0xA0 or decimal 160.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_ADDRESS_BYTE,160,0,0);

//SCL is FIO0
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SCL_PIN_NUM,0,0,0);

//SDA is FIO1
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SDA_PIN_NUM,1,0,0);

//See description of low-level I2C function.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_OPTIONS,0,0,0);

//See description of low-level I2C function. 0 is max speed of about 150 kHz.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SPEED_ADJUST,0,0,0);

//Execute the configuration requests.
GoOne(lngHandle);

Following is pseudocode to read 4 bytes from the EEPROM:

//Initial read of EEPROM bytes 0-3 in the user memory area.
//We need a single I2C transmission that writes the address and then reads
//the data. That is, there needs to be an ack after writing the address,
//not a stop condition. To accomplish this, we use Add/Go/Get to combine
//the write and read into a single low-level call.
numWrite = 1;
array[0] = 0; //Memory address. User area is 0-63.

 81

AddRequest(lngHandle, LJ_ioI2C_COMMUNICATION, LJ_chI2C_WRITE, numWrite, array, 0);

numRead = 4;
AddRequest(lngHandle, LJ_ioI2C_COMMUNICATION, LJ_chI2C_READ, numRead, array, 0);

//Execute the requests.
GoOne(lngHandle);

For more example code, see the I2C.cpp example in the VC6_LJUD archive.

4.3.12 Asynchronous Serial Communication
The UE9 has a UART available that supports asynchronous serial communication. Currently,
the UART connects to the PIN2/PIN20 (TX0/RX0) pins on the DB37 connector. On a future
UE9 hardware revision, it is expected that the UART will appear on FIO/EIO lines after any
timers and counters.

Communication is in the common 8/n/1 format. Similar to RS232, except that the logic is normal
CMOS/TTL. Connection to an RS232 device will require a converter chip such as the MAX233,
which inverts the logic and shifts the voltage levels.

This serial link is not an alternative to the USB connection. Rather, the host application will
write/read data to/from the UE9 over USB, and the USB communicates with some other device
using the serial protocol. Using this serial protocol is considered an advanced topic. A good
knowledge of the protocol is recommended, and a logic analyzer or oscilloscope might be
needed for troubleshooting.

There is one IOType used to write/read asynchronous data:

LJ_ioASYNCH_COMMUNICATION

The following are special channels used with the asynch IOType above:

LJ_chASYNCH_ENABLE // Enables UART to begin buffering rx data.
LJ_chASYNCH_RX // Value= returns pre-read buffer size. x1= array.
LJ_chASYNCH_TX // Value= number to send (0-56), number in rx buffer. x1= array.
LJ_chASYNCH_FLUSH // Flushes the rx buffer. All data discarded. Value ignored.

When using LJ_chASYNCH_RX, the Value parameter returns the size of the Asynch buffer before
the read. If the size is 32 bytes or less, that is how many bytes were read. If the size is more
than 32 bytes, then the call read 32 this time and there are still bytes left in the buffer.

When using LJ_chASYNCH_TX, specify the number of bytes to send in the Value parameter. The
Value parameter returns the size of the Asynch read buffer.

The following is a special channel, used with the get/put config IOTypes, to specify the baud
rate for the asynchronous communication:

LJ_chASYNCH_BAUDFACTOR // Value= 2^16 – 3000000/bps

For example, use a BaudFactor of 65224 to get a baud rate of 9615 bps (compatible with 9600
bps).

Following is example pseudocode for asynchronous communication:

 82

//Set data rate for 9600 bps communication.
ePut(lngHandle, LJ_ioPUT_CONFIG, LJ_chASYNCH_BAUDFACTOR, 65224, 0);

//Enable UART.
ePut(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_ENABLE, 1, 0);

//Write data.
eGet(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_TX, &numBytes, array);

//Read data. Always initialize array to 32 bytes.
eGet(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_RX, &numBytes, array);

4.3.13 Watchdog Timer
The UE9 has firmware based watchdog capability. Unattended systems requiring maximum up-
time might use this capability to reset the UE9 or the entire system. When any of the options
are enabled, an internal timer is enabled which resets on any incoming USB communication. If
this timer reaches the defined TimeoutPeriod before being reset, the specified actions will occur.
Note that while streaming, data is only going out, so some other command will have to be called
periodically to reset the watchdog timer.

Timeout of the watchdog on the UE9 can be specified to reset either/both processors, update
the state of 1 or 2 digital I/O (must be configured as output by user), and update either/both
DACs.

Typical usage of the watchdog is to configure the reset defaults as desired, and then use the
watchdog simply to reset the device on timeout.

Note that some USB hubs do not like to have any USB device repeatedly reset. With such
hubs, the operating system will quit reenumerating the device on reset and the computer will
have to be rebooted, so avoid excessive resets with hubs that seem to have this problem.

If the watchdog is accidentally configured to reset the Comm processor with a very low timeout
period (such as 1 second), it could be difficult to establish any communication with the device.
In such a case, the reset-to-default jumper can be used to turn off the watchdog. Power up the
U3 with a short from FIO2<=>SCL, then remove the jumper and power cycle the device again.
This resets all power-up settings to factory default values.

There is one IOType used to configure and control the watchdog:

LJ_ioSWDT_CONFIG //Channel is enable or disable constant.

The watchdog settings are stored in non-volatile flash memory (and reloaded at reset), so every
request with this IOType causes a flash erase/write. The flash has a rated endurance of at least
20000 writes, which is plenty for reasonable operation, but if this IOType is called in a high-
speed loop the flash could be damaged.

The following are special channels used with the watchdog config IOType above:

LJ_chSWDT_ENABLE // Value is timeout in seconds (1-65535).
LJ_chSWDT_DISABLE

The following are special channels, used with the put config IOType, to configure watchdog
options. These parameters cause settings to be updated in the driver only. The settings are not
actually sent to the hardware until the LJ_ioSWDT_CONFIG IOType (above) is used:

 83

LJ_chSWDT_RESET_DEVICE
LJ_chSWDT_RESET_COMM
LJ_chSWDT_RESET_CONTROL
LJ_chSWDT_UDPATE_DIOA
LJ_chSWDT_UPDATE_DIOB
LJ_chSWDT_DIOA_CHANNEL
LJ_chSWDT_DIOA_STATE
LJ_chSWDT_DIOB_CHANNEL
LJ_chSWDT_DIOB_STATE
LJ_chSWDT_UPDATE_DAC0
LJ_chSWDT_UPDATE_DAC1
LJ_chSWDT_DAC0
LJ_chSWDT_DAC1
LJ_chSWDT_DAC_ENABLE

Following is example pseudocode to configure and enable the watchdog:

//Initialize EIO2 to output-low, which also forces the direction to output.
//It would probably be better to do this by configuring the power-up defaults.
AddRequest(lngHandle, LJ_ioPUT_DIGITAL_BIT, 10,0,0,0);

//Specify that the Comm processor should be reset on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_RESET_COMM,1,0,0);

//Specify that the Control processor should be reset on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_RESET_CONTROL,1,0,0);

//Specify that the state of digital line A should be updated on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_UDPATE_DIOA,1,0,0);

//Specify that EIO2 is the desired digital line A.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DIOA_CHANNEL,10,0,0);

//Specify that the digital line should be set high.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DIOA_STATE,1,0,0);

//Specify that DAC0 should be updated on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_UPDATE_DAC0,1,0,0);

//Specify that DAC0 should be set to 4.1 volts on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DAC0,4.1,0,0);

//Enable the watchdog with a 60 second timeout.
AddRequest(lngHandle, LJ_ioSWDT_CONFIG, LJ_chSWDT_ENABLE,60,0,0);

//Execute the requests.
GoOne(lngHandle);

Following is pseudocode to disable the watchdog:

//Disable the watchdog.
ePut(lngHandle, LJ_ioSWDT_CONFIG, LJ_chSWDT_DISABLE,0,0);

4.3.13 Miscellaneous
The following are special channels, used with the get/put config IOTypes, to read/write the
calibration memory and user memory:

LJ_chCAL_CONSTANTS
LJ_chUSER_MEM

 84

For more information, see the low-level descriptions in Sections 5.3.10-5.3.12, and see the
Memory example in the VC6_LJUD archive.

 85

4.4 Errorcodes
All functions return an LJ_ERROR errorcode as listed in the following tables.

able 4-1. Request Level Error Codes (Part 1)

Errorcode Name Description
-2 LJE_UNABLE_TO_READ_CALDATA Warning: Defaults used instead.
-1 LJE_DEVICE_NOT_CALIBRATED Warning: Defaults used instead.
0 LJE_NOERROR
2 LJE_INVALID_CHANNEL_NUMBER Channel that does not exist (e.g. DAC2 on a

UE9), or data from stream is requested on a
channel that is not in the scan list.

3 LJE_INVALID_RAW_INOUT_PARAMETER
4 LJE_UNABLE_TO_START_STREAM
5 LJE_UNABLE_TO_STOP_STREAM
6 LJE_NOTHING_TO_STREAM
7 LJE_UNABLE_TO_CONFIG_STREAM
8 LJE_BUFFER_OVERRUN Overrun of the UD stream buffer.
9 LJE_STREAM_NOT_RUNNING
10 LJE_INVALID_PARAMETER
11 LJE_INVALID_STREAM_FREQUENCY
12 LJE_INVALID_AIN_RANGE
13 LJE_STREAM_CHECKSUM_ERROR
14 LJE_STREAM_COMMAND_ERROR
15 LJE_STREAM_ORDER_ERROR Stream packet received out of sequence.
16 LJE_AD_PIN_CONFIGURATION_ERROR Analog request on a digital pin, or vice versa.
17 LJE_REQUEST_NOT_PROCESSED Previous request had an error.
19 LJE_SCRATCH_ERROR
20 LJE_DATA_BUFFER_OVERFLOW
21 LJE_ADC0_BUFFER_OVERFLOW
22 LJE_FUNCTION_INVALID
23 LJE_SWDT_TIME_INVALID
24 LJE_FLASH_ERROR
25 LJE_STREAM_IS_ACTIVE
26 LJE_STREAM_TABLE_INVALID
27 LJE_STREAM_CONFIG_INVALID
28 LJE_STREAM_BAD_TRIGGER_SOURCE
30 LJE_STREAM_INVALID_TRIGGER
31 LJE_STREAM_ADC0_BUFFER_OVERFLOW
33 LJE_STREAM_SAMPLE_NUM_INVALID
34 LJE_STREAM_BIPOLAR_GAIN_INVALID
35 LJE_STREAM_SCAN_RATE_INVALID

T

 86

Errorcode Name Description
36 LJE_TIMER_INVALID_MODE
37 LJE_TIMER_QUADRATURE_AB_ERROR
38 LJE_TIMER_QUAD_PULSE_SEQUENCE
39 LJE_TIMER_BAD_CLOCK_SOURCE
40 LJE_TIMER_STREAM_ACTIVE
41 LJE_TIMER_PWMSTOP_MODULE_ERROR
42 LJE_TIMER_SEQUENCE_ERROR
43 LJE_TIMER_SHARING_ERROR
44 LJE_TIMER_LINE_SEQUENCE_ERROR
45 LJE_EXT_OSC_NOT_STABLE
46 LJE_INVALID_POWER_SETTING
47 LJE_PLL_NOT_LOCKED
48 LJE_INVALID_PIN
49 LJE_IOTYPE_SYNCH_ERROR
50 LJE_INVALID_OFFSET
51 LJE_FEEDBACK_IOTYPE_NOT_VALID
52 LJE_SHT_CRC
53 LJE_SHT_MEASREADY
54 LJE_SHT_ACK
55 LJE_SHT_SERIAL_RESET
56 LJE_SHT_COMMUNICATION
57 LJE_AIN_WHILE_STREAMING AIN not available to command/response

functions while the UE9 is streaming.
58 LJE_STREAM_TIMEOUT
60 LJE_STREAM_SCAN_OVERLAP New scan started before the previous scan

completed. Scan rate is too high.
61 LJE_FIRMWARE_VERSION_IOTYPE IOType not supported with this firmware.
62 LJE_FIRMWARE_VERSION_CHANNEL Channel not supported with this firmware.
63 LJE_FIRMWARE_VERSION_VALUE Value not supported with this firmware.
64 LJE_HARDWARE_VERSION_IOTYPE IOType not supported with this hardware.
65 LJE_HARDWARE_VERSION_CHANNEL Channel not supported with this hardware.
66 LJE_HARDWARE_VERSION_VALUE Value not supported with this hardware.

Table 4-2. Request Level Error Codes (Part 2)

 87

70 LJE_TC_PIN_OFFSET_MUST_BE_4_TO_8

Errorcode Name Description
1000 LJE_MIN_GROUP_ERROR Errors above this number stop all requests.
1001 LJE_UNKNOWN_ERROR Unrecognized error that is caught.
1002 LJE_INVALID_DEVICE_TYPE
1003 LJE_INVALID_HANDLE
1004 LJE_DEVICE_NOT_OPEN AddRequest() called even though Open() failed.
1005 LJE_NO_DATA_AVAILABLE GetResult() called without calling a Go

function, or a channel is passed that was not
in the request list.

1006 LJE_NO_MORE_DATA_AVAILABLE
1007 LJE_LABJACK_NOT_FOUND LabJack not found at the given id or address.
1008 LJE_COMM_FAILURE Unable to send or receive the correct number

of bytes.
1009 LJE_CHECKSUM_ERROR
1010 LJE_DEVICE_ALREADY_OPEN
1011 LJE_COMM_TIMEOUT

Table 4-3. Group Level Error Codes

The first two tables list errors which are specific to a request. For example,
LJE_INVALID_CHANNEL_NUMBER. If this error occurs, other requests are not affected. The
last table lists errors which cause all pending requests for a particular Go() to fail with the same
error. If this type of error is received the state of any of the request is not known. For example,
if requests are executed with a single Go() to set the AIN range and read an AIN, and the read
fails with an LJE_COMM_FAILURE, it is not known whether the AIN range was set to the new
value or whether it is still set at the old value.

 88

5. Low-Level Function Reference
This section describes the low-level functions of the UE9. These are commands sent over
Ethernet or USB directly to the processors on the UE9. The Ethernet commands can all be sent
using TCP, except for DiscoveryUDP. All commands, except stream related commands, can
also be sent using UDP.

The majority of Windows users will use the high-level UD driver rather than these low-level
functions.

5.1 General Protocol
Following is a description of the general UE9 low-level communication protocol. There are two
types of commands:

Normal: 1 command word plus 0-7 data words.
Extended: 3 command words plus 0-125 data words.

Normal commands have a smaller packet size and can be faster in some situations. Extended
commands provide more commands, better error detection, and a larger maximum data
payload.

Normal command format:

Byte
0 Checksum8: Includes bytes 1-15.
1 Command Byte: DCCCCWWW

Bit 7: Destination bit:
0 = Local,
1 = Remote.

Bits 6-3: Normal command number (0-14).
Bits 2-0: Number of data words.

2-15 Data words.

Extended command format:

Byte
0 Checksum8: Includes bytes 1-5.
1 Command Byte: D1111CCC

Bit 7: Destination bit:
0 = Local,
1 = Remote.

Bits 6-3: 1111 specifies that this is an extended command.
Bits 2-0: Used with some commands.

2 Number of data words.
3 Extended command number.
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6-255 Data words.

 89

Checksum calculations:

All checksums are a "1's complement checksum". Both the 8-bit and 16-bit checksum are
unsigned. Sum all applicable bytes in an accumulator, 1 at a time. Each time another byte is
added, check for overflow (carry bit), and if true add one to the accumulator.

In a high-level language, do the following for the 8-bit normal command checksum:

-Get the subarray consisting of bytes 1 and up.
-Convert bytes to U16 and sum into a U16 accumulator.
-Divide by 28 and sum the quotient and remainder.
-Divide by 28 and sum the quotient and remainder.

 a high-level language, do the following for an extended command 16-bit checksum:

et the subarray consisting of bytes 6 and up.

onvert bytes to U16 and sum into a U16 accumulator.
r.

estination bit:

In

-G
-Convert bytes to U16 and sum into a U16 accumulator (can't overflow).

Then do the following for the 8-bit extended checksum:

-Get the subarray consisting of bytes 1 through 5.
-C
-Divide by 28 and sum the quotient and remainde
-Divide by 28 and sum the quotient and remainder.

D

his bit specifies whether the command is destined for the local or remote target. Generally,
 Comm processor, while remote means the

ulti-byte parameters:

T
local means the packet should be handled by the
Comm processor should pass the packet on.

M

i-byte parameters. The least
d at the lowest byte number. For instance,
ess which is 4 bytes long. Byte 10 is the

ast significant byte (LSB), and byte 13 is the most significant byte (MSB).

asks:

In the following function definitions there are various mult
significant byte of the parameter will always be foun
bytes 10 through 13 of CommConfig are the IP addr
le

M

owing documentation, parameters affected by the
riteMask have a [#] next to their name which specifies which bit in the WriteMask goes with
hich parameter. If a bit is 1, that parameter will be updated with the new passed value. If a bit

t changed and only a read is performed.

 is a 16-

Some functions have mask parameters. The WriteMask found in some functions specifies
which parameters are to be written. In the foll
W
w
is 0, the parameter is no

The AINMask found in some functions specifies which analog inputs are acquired. This
bit parameter where each bit corresponds to AIN0-AIN15. If a bit is 1, that channel will be
acquired.

 90

The digital I/O masks, such as FIOMask, specify that the passed value for direction and state
ted if a bit 1. If a bit of the mask is 0 only a read is performed on that bit of I/O. are upda

Resolution:

All analog input functions have a Resolution parameter. This allows you to choose between
speed or resolution. See Sections 3.1 and 3.2 for timing information.

SettlingTime:

Some analog input functions have a SettlingTime parameter. This parameter adds extra settling

inary Encoded Parameters:

time before each sample of about SettlingTime * 5 microseconds.

B

any parameters in the following functions use specific bits within a single integer parameter to
on

the same bit in the
arameter (e.g. the direction of FIO0 is set in bit 0 of parameter FIODir). For instance, in the
nction ControlConfig, the parameter FIODir is a single byte (8 bits) that writes/reads the

ch of the 8 FIO lines:

• if FIODir is 5 (20 + 22), FIO0 and FIO2 are output, all other FIO lines are input,
0 7), FIO0-FIO7 are output.

M
write/read specific information. In particular, most digital I/O parameters contain the informati
for each bit of I/O in one integer, where each bit of I/O corresponds to
p
fu
direction of ea

• if FIODir is 0, all FIO lines are input,
• if FIODir is 1 (20), FIO0 is output, FIO1-FIO7 are input,

• if FIODir is 255 (2 + … + 2

 91

5.2 Comm Functions
These are functions which are handled by the Comm processor only, and thus the packet
destination bit is 0 for local. All functions can be transferred by USB, Ethernet TCP, or Ethernet
UDP.

5.2.1 CommConfig
Writes and reads various configuration settings associated with the Comm processor.

If WriteMask is nonzero, some or all default values are written to flash. The Comm flash has a
rated endurance of at least 20000 writes, which is plenty for reasonable operation, but if this
function is called in a high-speed loop with a nonzero WriteMask, the flash could eventually be
damaged.

There is a hardware method to restore parameters to the default values described below (in
parentheses). Power up the UE9 with a short from FIO2<=>SCL, then remove the jumper and
power cycle the device again. This also returns Control settings to factory defaults (Sections
5.3.2 and 5.3.13).

] denotes WriteMask bit number association.

Command:

Byte
0 Checksum8
1 0x78
2 0x10
3 0x01
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask
7 Reserved
8 LocalID [0]
9 PowerLevel [1]

0x00: Normal
0x01: Reserved
0x02: Reserved

10-13 IPAddress [2]
14-17 Gateway [3]
18-21 Subnet [4]
22-23 PortA [5]
24-25 PortB [5]

26 DHCPEnabled [6]
27 0x00

28-33 0x00
34-35 0x00
36-37 0x00

[#

 92

Response:

Byte
0 Checksum8
1 0x78
2 0x10
3 0x01
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask
7 Reserved
8 LocalID
9 PowerLevel

10-13 IPAddress
14-17 Gateway
18-21 Subnet
22-23 PortA
24-25 PortB

26 DHCPEnabled
27 ProductID

28-33 MACAddress
34-35 HWVersion
36-37 CommFWVersion

• WriteMask: See general protocol description in Section 5.1.
• LocalID: (1) Used by higher-level functions to identify a specific LabJack.
• PowerLevel: (0) Not implemented.
• IPAddress: (192.168.1.209) The value returned by this parameter is the current

IPAddress. If you write a new IPAddress, it will not take effect until after a reset, so you
will not immediately read back the new address.

• Gateway: (192.168.1.1) Reset required for a change to take effect.
• Subnet: (255.255.255.0) Reset required for a change to take effect.
• PortA: (52360) Normal TCP/UDP port. Reset required for a change to take effect. Note

that bit 5 of WriteMask affects PortA and PortB.
• PortB: (52361) Secondary TCP port. Reset required for a change to take effect. Only

used to send stream data from the UE9 to the host.
• DHCPEnabled: (0) A value of 1 means that DHCP is enabled. Reset required for a

change to take effect.
• ProductID: (9) Fixed parameter identifies this LabJack as a UE9.
• MACAddress: Fixed parameter.
• HWVersion: Fixed parameter specifies the version number of the electronics hardware.

The lower byte is the integer portion of the version and the higher byte is the fractional
portion of the version.

• CommFWVersion: Fixed parameter specifies the version number of the Comm
firmware. A firmware upgrade will generally cause this parameter to change. The lower
byte is the integer portion of the version and the higher byte is the fractional portion of
the version.

 93

5.2.2 FlushBuffer
Resets the pointers to the stream buffer to make it empty. Often called before a stream, after a
stream, or both.

Command:

Byte
0 0x08
1 0x08

Response:

Byte
0 0x08
1 0x08

 94

5.2.3 DiscoveryUDP
This is a special function only used over Ethernet UDP. Send the 6-byte command below to
port 52362, using the broadcast IP of 255.255.255.255. The command will try to go to every
device on the subnet, and every Ethernet LabJack should send back the specified 38 byte
response.

The response is similar to the response from the CommConfig function. See Section 5.2.1 for
additional documentation.

DiscoveryUDP and the standard Ping function are useful for finding Ethernet connected UE9s
and testing basic communication.

Command:

Byte
0 0x22
1 0x78
2 0x00
3 0xA9
4 0x00
5 0x00

Response:

Byte
0 Checksum8
1 0x78
2 0x10
3 0xA9
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 0x00
8 LocalID
9 PowerLevel

10-13 IPAddress
14-17 Gateway
18-21 Subnet
22-23 PortA
24-25 PortB

26 DHCPConfig
27 ProductID

28-33 MACAddress
34-35 HWVersion
36-37 CommFWVersion

 95

5.3 Control Functions
These are functions that are handled by the Control processor, and thus the packet destination
bit is 1 for remote. Most functions can be transferred by USB, Ethernet TCP, or Ethernet UDP.
The exception is stream commands which are not supported over UDP.

5.3.1 BadChecksum
If the Control processor detects a bad checksum in any command, the following 2-byte normal
response will be sent and nothing further will be done.

Response:

Byte
0 0xB8
1 0xB8

 96

5.3.2 ControlConfig
Configures various parameters associated with the Control processor. Although this function
appears to have many of the same digital I/O and DAC parameters as other functions, most
parameters in this case are affecting the power-up values, not the current values.

If WriteMask is nonzero, some or all default values are written to flash. The Control flash has a
rated endurance of at least 20000 writes, which is plenty for reasonable operation, but if this
function is called in a high-speed loop with a nonzero WriteMask, the flash could be damaged.

There is a hardware method to restore parameters to the default values described below (in
parentheses). Power up the UE9 with a short from FIO2<=>SCL, then remove the jumper and
power cycle the device again. This also returns Comm (Section 5.2.1) and Watchdog (Section
5.3.13) settings to factory defaults.

Command:

Byte
0 Checksum8
1 0xF8
2 0x06
3 0x08
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask

Bit 2: Update DAC defaults
Bit 1: Update digital defaults
Bit 0: Update power level default

7 PowerLevel [0]
0x00: Fixed high, system clock = 48 MHz
0x01: Fixed low, system clock = 6 MHz

8 FIODir
9 FIOState
10 EIODir
11 EIOState
12 CIODirState

Bits 7-4: Direction
Bits 3-0: State

13 MIODirState
Bit 7: Do not load digital I/O defaults
Bits 6-4: Direction
Bits 2-0: State

14 DAC0 (LSB)
15 DAC0

Bit 7: Enabled
Bits 3-0: Upper 4 bits of output

16 DAC1 (LSB)
17 DAC1

Bit 7: Enabled
Bits 3-0: Upper 4 bits of output

 97

Response:

Byte
0 Checksum8
1 0xF8
2 0x09
3 0x08
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 PowerLevel
8 ResetSource

9-10 ControlFWVersion
11-12 ControlBLVersion

13 HiRes Flag (Bit 0)
14 FIODir
15 FIOState
16 EIODir
17 EIOState
18 CIODirState

Bits 7-4: Direction
Bits 3-0: State

19 MIODirState
Bits 6-4: Direction
Bits 2-0: State

20 DAC0 (LSB)
21 DAC0

Bit 7: Enabled
Bits 3-0: Upper 4 bits of output

22 DAC1 (LSB)
23 DAC1

Bit 7: Enabled
Bits 3-0: Upper 4 bits of output

• PowerLevel: (0) Specifies different system clock speeds for the Control processor.
Streaming does not work at fixed low speed. The WriteMask behaves differently for this
parameter. The value passed for PowerLevel always becomes the current operating
condition. If the WriteMask bit 0 is set, the value passed becomes the current value and
the default value, meaning it is written to flash and used at reset. The return value of
this parameter is a read of the power-up default.

• FIO/EIO/CIO/MIO: (0) If the WriteMask bit 1 is set, the values passed become the
default values, meaning they are written to flash and used at reset. Regardless of the
mask bit, this function has no effect on the current settings. These defaults are only
used if bit 8 of MIODirState is clear. The return value of this parameter is a read of the
power-up defaults.

• DAC#: (0) If the WriteMask bit 2 is set, the values passed become the default values,
meaning they are written to flash and used at reset. Regardless of the mask bit, this
function has no effect on the current settings. The return value of this parameter is a
read of the power-up defaults.

• ControlFWVersion: Fixed parameter specifies the version number of the Control
firmware. A firmware upgrade will generally cause this parameter to change.

 98

5.3.3 Feedback (and FeedbackAlt)
A very useful function that writes/reads almost every I/O on the LabJack UE9.

Feedback Command:

Byte
0 Checksum8
1 0xF8
2 0x0E
3 0x00
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 FIOMask
7 FIODir
8 FIOState
9 EIOMask
10 EIODir
11 EIOState
12 CIOMask
13 CIODirState

Bits 7-4: Direction
Bits 3-0: State

14 MIOMask
15 MIODirState

Bits 6-4: Direction
Bits 2-0: State

16 DAC0 (LSB)
17 DAC0

Bit 7: Enabled
Bit 6: Update
Bits 3-0: Upper 4 bits of output

18 DAC1 (LSB)
19 DAC1

Bit 7: Enabled
Bit 6: Update
Bits 3-0: Upper 4 bits of output

20-21 AINMask
22 AIN14ChannelNumber
23 AIN15ChannelNumber
24 Resolution
25 SettlingTime
26 AIN1_0_BipGain
27 AIN3_2_BipGain
28 AIN5_4_BipGain
29 AIN7_6_BipGain
30 AIN9_8_BipGain
31 AIN11_10_BipGain
32 AIN13_12_BipGain
33 AIN15_14_BipGain

 99

Response:

Byte
0 Checksum8
1 0xF8
2 0x1D
3 0x00
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 FIODir
7 FIOState
8 EIODir
9 EIOState
10 CIODirState
11 MIODirState

12-13 AIN0
14-15 AIN1
16-17 AIN2
18-19 AIN3
20-21 AIN4
22-23 AIN5
24-25 AIN6
26-27 AIN7
28-29 AIN8
30-31 AIN9
32-33 AIN10
34-35 AIN11
36-37 AIN12
38-39 AIN13
40-41 AIN14
42-43 AIN15
44-47 Counter0
48-51 Counter1
52-55 TimerA
56-59 TimerB
60-63 TimerC

• IOMask: Mask each bit of digital I/O individually. If a bit is 1, then the new direction and
state values will be written to that bit of I/O. If a bit is 0, only a read of state and direction
will be done.

• IODir: 0 is input, and 1 is output.
• IOState: As a write parameter, only has an effect if a line is set to output. For each bit,

0 is output-low, and 1 is output-high. As a read parameter, it returns the current input
state of each line where 0 is low and 1 is high.

• DAC#: The UE9 has 12-bit analog outputs, so pass an output value between 0 and
4095, plus set bits 6 and 7 of the high byte accordingly. Bit 6 specifies whether the
given DAC will be updated with the new value. If Bit7 is set on either DAC, then both are
enabled. To disable the DACs (set to high-impedance), bit 7 must be 0 for both DACs.

• AINMask: If a bit is 0, the corresponding channel will not be acquired (saving time), and
will return 0 as a reading.

• AIN14/15ChannelNumber: Generally used to choose one of the internal channels, but
any channel can be used.

 100

• Resolution: Determines the resolution setting for all analog inputs (12-17). See
Sections 2.7, 3.1, and 3.2. This function does not support the high-resolution converter
on the UE9-Pro.

• SettlingTime: Adds extra settling time before acquiring each channel. The extra delay is
this value multiplied by about 5 microseconds.

• BipGain: Contains the bipolar setting and gain options for two analog input channels.
The high nibble controls the higher channel number. The high bit of each nibble is the
bipolar option and the lower 3 bits of each nibble are the gain index. Following are the
nibble values for various gains:

Gain Unipolar Bipolar
*1 0x00 0x08
*2 0x01 NA
*4 0x02 NA
*8 0x03 NA

• AIN#: Returns raw analog input conversions. Regardless of Resolution, the value

returned is 0-65520, where 0 is the minimum (not 2’s complement)
• Counter#: Returns the current count from the counters if enabled. Use the function

TimerCounter to enable and configure the counters.
• Timer#: Returns the values from the first 3 enabled timer modules. Use the function

TimerCounter to enable and configure the timer modules.

The LabJackUD driver for Windows uses a modified version of the Feedback function called
FeedbackAlt. This modified function has additional parameters added to specify channel
numbers for all 16 analog input reads, making it useful when using extended channels or more
than 2 internal channels.

The command for FeedbackAlt is the same as Feedback, except that AINxChannelNumber
parameters are added for channels 0-13 (new bytes 34-47). The command number (byte 3)
changes to 0x01 and the number of data words (byte 2) changes to 0x15.

The response for FeedbackAlt is the same as Feedback, except that the counter/timer reads are
removed, and thus the response is 44 bytes long. The command number (byte 3) changes to
0x01 and the number of data words (byte 2) changes to 0x13.

The order of execution in hardware for either function is:

1. Write digital I/O.
2. Read digital I/O.
3. Write analog outputs.
4. Read analog inputs.
5. Read timers and counters (skipped in FeedbackAlt).

 101

5.3.4 SingleIO
An alternative to Feedback, is this function which writes or reads a single output or input.

Command:

Byte
0 Checksum8
1 0xA3
2 IOType
3 Channel
4 Dir/BipGain/DACL
5 State/Resolution/DACH
6 SettlingTime
7 Reserved

Response:

Byte
0 Checksum8
1 0xA3
2 IOType
3 Channel
4 Dir/AINL
5 State/AINM
6 AINH
7 Reserved

• IOType: Specifies the I/O to write or read. The digital read types are used to read the

state and direction of digital I/O. The digital write types are used to configure digital I/O
to one of three states: input, output-low, or output-high.

IOType
0 Digital Bit Read
1 Digtial Bit Write
2 Digital Port Read
3 Digital Port Write
4 Analog In
5 Analog Out

• Channel: Specifies which channel of IOType to write or read. For the digital port

IOTypes (2 & 3) use the following table.

Digital Port
Channel

0 FIO
1 EIO
2 CIO
3 MIO

• Dir/BipGain/DACL: For a digital bit write, this is 0 for input, and 1 for output. For a

digital port write, this is multiple bits specifying input or output for each line. Ignored for

 102

digital reads. For an analog input this is the BipGain parameter (see Feedback). For an
analog output this is the low byte of the binary output value.

• State/Resolution/DACH: For a digital bit write, this is the output state. For a digital port
write, this is multiple bits specifying the output state for each line. Ignored for digital
reads. For an analog input this is the Resolution parameter (12-18). For an analog
output this is the most significant 4 bits of the binary output value, and the upper 4 bits
are ignored as the output is always updated and IOType=5 causes both DACs to be
enabled.

• SettlingTime: Only applies to analog inputs (see Feedback).
• Dir/AINL: For a digital bit read, this reads 0 for input, and 1 for output. For a digital port

read, this is multiple bits returning input or output for each line. For digital writes this is
just an echo. For an analog input this is the lowest 8 bits of the 24-bit conversion value
(generally ignored on the UE9).

• State/AINM: For a digital bit read, this is a read of the input state. For a digital port
read, this is multiple bits returning a read of the input state for each line. For digital
writes this is just an echo. For an analog input this is the middle 8 bits of the 24-bit
conversion value, or more typically considered the lowest 8 bits of the 16-bit conversion
value.

• AINH: For an analog input this is the high 8 bits of the 24-bit conversion value, or more
typically considered the high 8 bits of the 16-bit conversion value.

 103

5.3.5 TimerCounter
Enables, configures, and reads the counters and timers.

Command:

Byte
0 Checksum8
1 0xF8
2 0x0C
3 0x18
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 TimerClockDivisor (0 = ÷256)
7 EnableMask

Bit 7: UpdateConfig
Bit 4: Enable Counter1
Bit 3: Enable Counter0
Bits 2-0: Number of timers enabled

8 TimerClockBase
0x00: 750 kHz
0x01: System Clock
0x02: Reserved
0x03: Reserved
0x04: Reserved

9 UpdateReset
Bit 7: Reset Counter1
Bit 6: Reset Counter0
Bit 5: UpdateReset Timer5
Bit 4: UpdateReset Timer4
Bit 3: UpdateReset Timer3
Bit 2: UpdateReset Timer2
Bit 1: UpdateReset Timer1
Bit 0: UpdateReset Timer0

10 Timer0Mode
11-12 Timer0Value

13 Timer1Mode
14-15 Timer1Value

16 Timer2Mode
17-18 Timer2Value

19 Timer3Mode
20-21 Timer3Value

22 Timer4Mode
23-24 Timer4Value

25 Timer5Mode
26-27 Timer5Value

28 Counter0Mode
29 Counter1Mode

 104

Response:

Byte
0 Checksum8
1 0xF8
2 0x11
3 0x18
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 EnableStatus

8-11 Timer0
12-15 Timer1
16-19 Timer2
20-23 Timer3
24-27 Timer4
28-31 Timer5
32-35 Counter0
36-39 Counter1

• EnableMask: If the UpdateConfig bit is 0, this parameter and the TimerClock
parameters do nothing. If the UpdateConfig bit is 1, then the timers and counters are
enabled and disabled as specified by the other bits. The lower 3 bits specify the number
of timers enabled (0-6). Bits 3 and 4 are set to enable a counter, or cleared to disable a
counter. Any enabled timers and counters will take over FIO lines in order, starting with
FIO0. Counter1 is used internally by stream mode, but in such a case only uses an FIO
line if master or slave stream mode is used. The counters are reset when enabled or
disabled.

• EnableStatus: This is a read of the current EnableMask value of the device.
• TimerClockBase: The determines the timer base clock which is used by all output mode

timers. The choices are a fixed 750 kHz clock source, or the system clock. The UE9 is
by default in high power mode which means the system clock is fixed at 48 MHz. The
UpdateConfig bit must be set to change this parameter.

• TimerClockDivisor: The timer clock is divided by this value, or divided by 256 if this
value is 0. The UpdateConfig bit must be set to change this parameter.

• UpdateReset: Each bit of this parameter determines whether that timer or counter is set
to a new value or reset. Reads are performed before reset.

• Timer#Mode: These values are only updated if the UpdateConfig bit is set. Following
are the values to pass to configure how a timer operates:

Timer Modes

0 16-bit PWM output
1 8-bit PWM output
2 Period input (32-bit, rising edges)
3 Period input (32-bit, falling edges)
4 Duty cycle input
5 Firmware counter input
6 Firmware counter input (with debounce)
7 Frequency output
8 Quadrature input
9 Timer stop input (odd timers only)
10 System timer low read
11 System timer high read

 10512 Period input (16-bit, rising edges)
13 Period input (16-bit, falling edges)

• Timer#Value: These values are only updated if the UpdateConfig or associated

 See

•
es from the timer modules. This is the value before reset (if

• the current count from the counters if enabled. This is the value

UpdateReset bit is 1. The meaning of this parameter varies with the timer mode.
Section 2.10 for further information.
Counter#Mode: Pass 0.

• Timer#: Returns the valu
reset was done).
Counter#: Returns
before reset (if reset was done).

 106

5.3.6 StreamConfig
Not supported over UDP. Stream mode operates on a table of channels that are scanned at the
specified scan rate. Before starting a stream, you need to call this function to configure the
table and scan clock.

• NumChannels: This is the number of channels you will sample per scan (1-128).
ction

• e
each scan (master mode). If you enable the external scan trigger, the UE9 scans the

Command:

Byte
0 Checksum8
1 0xF8
2 NumChannels + 3
3 0x11
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 NumChannels
7 Resolution
8 SettlingTime
9 ScanConfig

Bit 7: Enable scan pulse output.
Bit 6: Enable external scan trigger. Minimum Min With
Bits 4-3: Internal stream clock frequency. Scan Freq Divisor

b00: 4 MHz 61.1 0.239
b01: 48 MHz 733 2.87
b10: 750 kHz 11.5 0.045
b11: 24 MHz 367 1.44

Bit 1: Divide Clock by 256
10-11 Scan Interval (1-65535)

12 ChannelNumber (0-143)
13 ChannelOptions

Bits 3-0: BipGain

Repeat 12-13 for each channel

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x11
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

• Resolution: Determines the resolution setting for all analog inputs (12-16). See Se
3.2. This function does not support the high-resolution converter on the UE9-Pro.
ScanConfig: If you enable the scan pulse output, Counter1 will pulse low just befor

 107

table each time it detects a falling edge on Counter1 (slave mode). Valid combination
for bits 6 and 7 are b00, b01, or b10. You cannot pass b11. Counter1 is automatically
enabled and disabled by the stream functions. To provide the highest timing resolution,
the scan clock is generally set to the highest setting possible.
ScanInterval: (1-65535) This value divided by the clock frequency defined in the
ScanConfig parameter, gives the interval (in seconds) between

s

•
 scans.

• hannel.

• ChannelNumber: (0-143) See the analog input hardware description.
ChannelOptions: Contains the bipolar setting and gain options for the c
Following are the nibble values for various gains:

Gain Unipolar Bipolar
*1 0x00 0x08
*2 0x01 NA
*4 0x02 NA
*8 0x03 NA

 108

5.3.7 StreamStart
Not supported over UDP. Once the stream settings are configured, this function is called to
start the stream.

Command:

Byte
0 0xA8
1 0xA8

Response:

Byte
0 Checksum8
1 0xA9
2 Errorcode
3 0x00

 109

5.3.8 StreamData
Not supported over UDP. After starting the stream, the data will be sent as available in the
following format. Data is sent 16 samples at a time in a 46 byte packet. Reads oldest data from
buffer.

Note that USB stream data is a special case where each 46-byte data packet is padded with 2
zeros on the end (not part of the protocol), and then 4 of these 48-byte blocks are grouped
together and sent in 3 transfers over the 64-byte endpoint. See the USB Section for more
information.

• TimeStamp: Reserved.
(0-255) counter that is incremented by one for each packet of

• 0 is the

n

• rolBacklog: When streaming, the Control processor acquires data at precise
intervals, and transfers it to the Comm processor which has a large data buffer. The

Response:

Byte
0 Checksum8
1 0xF9
2 0x14
3 0xC0
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6-9 TimeStamp
10 PacketCounter
11 Errorcode

12-13 Sample0
14-15 Sample1
16-17 Sample2
18-19 Sample3
20-21 Sample4
22-23 Sample5
24-25 Sample6
26-27 Sample7
28-29 Sample8
30-31 Sample9
32-33 Sample10
34-35 Sample11
36-37 Sample12
38-39 Sample13
40-41 Sample14
42-43 Sample15

44 ControlBacklog
45 CommBacklog

• PacketCounter: An 8-bit
data. Useful to make sure packets are in order and no packets are missing.
Sample#: Stream data is placed in a FIFO (first in first out) buffer, so Sample
oldest data read from the buffer and Sample15 is the 16th oldest sample. This stream
data packet always returns 16 samples regardless of the number of channels in the sca
list.
Cont

 110

Control processor has a small data buffer (256 samples) for data waiting to be
transferred to the Comm processor, and this ControlBacklog parameter specifies the
number of samples remaining in the Control buffer. If this parameter is nonzero
growing, it suggests that the Control processor is too busy.
CommBacklog: The Comm processor holds stream data in a 4 Mbit FIFO buffer (512
kBytes, 11397 StreamData packets, 182361 samples) until it can be se

 and

•
nt to the host.

) in the

The lower 7 bits of CommBacklog specifies how much data is left in the buffer in
increments of 4096 bytes. The MSb of CommBacklog is set on buffer overflow, but in
such a case the lower 7 bits still specify the amount of valid data (before overflow
buffer.

 111

5.3.9 StreamStop
Not supported over UDP.

Command:

Byte
0 0xB0
1 0xB0

Response:

Byte
0 Checksum8
1 0xB1
2 Errorcode
3 0x00

 112

5.3.10 ReadMem
Reads 1 block (128 bytes) from the Control non-volatile memory. The Mem area is arranged in
16 blocks of 128 bytes each. Blocks 0-7 are used by LabJack Corporation to store calibration
data, and blocks 8-15 are available to the user.

Command:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x2A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 BlockNum

Response:

Byte
0 Checksum8
1 0xF8
2 0x41
3 0x2A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 BlockNum

8-135 Data

 113

5.3.11 WriteMem
Writes 1 block (128 bytes) to the Control non-volatile memory. The Mem area must be erased
before writing. The Mem area is arranged in 16 blocks of 128 bytes each. Blocks 0-7 are used
by LabJack Corporation to store calibration data, and blocks 8-15 are available to the user.

Command:

Byte
0 Checksum8
1 0xF8
2 0x41
3 0x28
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 BlockNum

8-135 Data

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x28
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 114

5.3.12 EraseMem
The UE9 uses flash memory, so you must erase it before writing. The non-volatile Mem area is
arranged in 16 blocks of 128 bytes each. Blocks 0-7 are used by LabJack Corporation to store
calibration data, and blocks 8-15 are available to the user. The EraseMem function erases 1
kByte at a time (blocks 0-7 or blocks 8-15). There is no way to erase only a smaller area.

Command:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x29
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 EraseArea (LSB)

0x00: Blocks 8-15
0x4C: Blocks 0-7

7 EraseArea (MSB)
0x00: Blocks 8-15
0x4A: Blocks 0-7

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x29
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 115

5.3.13 WatchdogConfig
Controls a firmware based watchdog timer. Unattended systems requiring maximum up-time
might use this capability to reset the UE9 or the entire system. When any of the options are
enabled, an internal timer is enabled which resets on any incoming Control communication. If
this timer reaches the defined TimeoutPeriod before being reset, the specified actions will occur.
Note that while streaming, data is only going out of the Control processor, so some other
Control command will have to be called periodically to reset the watchdog timer.

If the watchdog is accidentally configured to reset the processors with a very low timeout period
(such as 1 second), it could be difficult to establish any communication with the device. In such
a case, the reset-to-default jumper can be used to turn off the watchdog (sets bytes 7-10 to 0).
Power up the UE9 with a short from FIO2<=>SCL, then remove the jumper and power cycle the
device again. This also returns Comm (Section 5.2.1) and Control (Section 5.3.2) settings to
factory defaults.

The watchdog settings (bytes 7-10) are stored in non-volatile flash memory, so every call to this
function where settings are changed causes a flash erase/write. The Control flash has a rated
endurance of at least 20000 writes, which is plenty for reasonable operation, but if this function
is called in a high-speed loop the flash could be damaged.

 116

Command:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 WatchdogOptions

Bit 7: Reserved (0)
Bit 6: Reset Comm on Timeout
Bit 5: Reset Control on Timeout
Bit 4: Update Digital I/O B on Timeout
Bit 3: Update Digital I/O A on Timeout
Bit 1: Update DAC1 on Timeout
Bit 0: Update DAC0 on Timeout

8-9 TimeoutPeriod
10 DIOConfigA

Bit 7: State
Bit 4-0: Digital IO #

11 DIOConfigB
Bit 7: State
Bit 4-0: Digital IO #

12 DAC0 (LSB)
13 DAC0

Bit 7: Enabled
Bits 3-0: Upper 4 bits of output

14 DAC1 (LSB)
15 DAC1

Bit 7: Enabled
Bits 3-0: Upper 4 bits of output

• WatchdogOptions: The watchdog is enabled when this byte is nonzero. Set the
I/O, or

• hdog timer is reset to zero on any incoming Control
mData is

Response:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 WatchdogOptions

appropriate bit to reset either or both processors, update the state of 1 or 2 digital
update 1 or both DACs.
TimeoutPeriod: The watc
communication. Note that most functions consist of a write and read, but Strea
outgoing only and does not reset the watchdog. If the watchdog timer is not reset before

 117

it counts up to TimeoutPeriod, the actions specified by WatchdogOptions will occur. The
watchdog timer has a clock rate of about 1 Hz, so a TimeoutPeriod range of 1-65535
corresponds to about 1 to 65535 seconds.
DIOConfig#: Determines which digital I/O is• affected by the watchdog, and the state it is

0-7 FIO0-FIO7

• AC#: Specifies values for the DACs on watchdog timeout. The UE9 has 12-bit analog

set to. The digital I/O # is a value from 0-22 according to the following:

8-15 EIO0-EIO7
16-19 CIO0-CIO3
20-22 MIO0-MIO2

D
outputs, so pass an output value between 0 and 4095, plus set bit 7 of the high byte
accordingly. If Bit7 is set on either DAC, then both are enabled. To disable the DACs
(set to high-impedance), bit 7 must be 0 for both DACs.

 118

5.3.14 WatchdogRead
Reads the current watchdog settings.

Command:

Byte
0 Checksum8
1 0xF8
2 0x00
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)

Response:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 WatchdogOptions

8-9 TimeoutPeriod
10 DIOConfigA
11 DIOConfigB

12-13 DAC0
14-15 DAC1

 119

5.3.15 Reset
Control command causes a soft or hard reset. Affects both processors.

Command:

Byte
0 Checksum8
1 0x99
2 ResetOptions

Bit 1: Hard Reset
Bit 0: Soft Reset

3 0x00

Response:

Byte
0 Checksum8
1 0x99
2 0x00
3 Errorcode

 120

5.3.16 SPI
Control command sends and receives serial data using SPI synchronous communication.

• NumSPIWords: This is the number of SPI bytes divided by 2. If the number of SPI
bytes is odd, round up and add an extra zero to the packet.

leDirConfig is true, this

•
6-SPIClockFactor), where

uency of

Command:

Byte
0 Checksum8
1 0xF8
2 4 + NumSPIWords
3 0x3A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 SPIOptions

Bit 7: AutoCS
Bit 6: DisableDirConfig
Bits 1-0: SPIMode (0=A, 1=B, 2=C, 3=D)

7 SPIClockFactor
8 Reserved
9 CSPinNum
10 CLKPinNum
11 MISOPinNum
12 MOSIPinNum
13 NumSPIBytesToTransfer
14 SPIByte0
… …

Byte

0 Checksum8
1 0xF8
2 1 + NumSPIWords
3 0x3A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumSPIBytesTransferred
8 SPIByte0
… …

• SPIOptions: If AutoCS is true, the CS line is automatically driven low during the SPI
communication and brought back high when done. If Disab
function does not set the direction of the lines, whereas if it is false the lines are
configured as CS=output, CLK=output, MISO=input, and MOSI=output. SPIMode
specifies the standard SPI mode as discussed below.
SPIClockFactor: Sets the frequency of the SPI clock according the following
approximate formula: Frequency = 1000000/(8+10*(25
passing a value of 0 corresponds to a factor of 256, and thus a maximum freq
about 125 kHz.

 121

•
0-22 corresponding to the normal digital I/O numbers as specified in

•

he initial state of SCK is set properly (CPOL), by this function, before CS (chip select) is
rought low (final state is also set properly before CS is brought high again). If CS is being

 set

ted (A, B, C, and D).

Mode B: CPHA=1, CPOL=0

If Clock alid on the edge going to CPOL. If CPHA is 0, data is valid

n the edge going away from CPOL. Clock Polarity (CPOL) determines the idle state of SCK.

e
me each byte is written.

CS/CLK/MISO/MOSI -PinNum: Assigns which digital I/O line is used for each SPI line.
Value passed is
Section 2.9.
NumSPIBytesToTransfer: Specifies how many SPI bytes will be transferred (1-240).

T
b
handled manually, outside of this function, care must be taken to make sure SCK is initially
to CPOL before asserting CS.

All standard SPI modes suppor

Mode A: CPHA=1, CPOL=1

Mode C: CPHA=0, CPOL=1
Mode D: CPHA=0, CPOL=0

 Phase (CPHA) is 1, data is v
o

Up to 240 bytes can be written/read. Communication is full duplex so 1 byte is read at the sam
ti

 122

5.3.17 AsynchConfig
Control command configures the UE9 UART for asynchronous communication. Currently, the
UART connects to the PIN2/PIN20 (TX0/RX0) pins on the DB37 connector. On a future UE9
hardware revision, it is expected that the UART will appear on FIO/EIO lines after any timers
and counters. Communication is in the common 8/n/1 format. Similar to RS232, except that the
logic is normal CMOS/TTL. Connection to an RS232 device will require a converter chip such
as the MAX233, which inverts the logic and shifts the voltage levels.

Command:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x14
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 AsynchOptions

Bit 7: Update
Bit 6: UARTEnable
Bit 5: Reserved

8-9 BaudFactor16

Response:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x14
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 AsynchOptions

8-9 BaudFactor16

• AsynchOptions: If Update is true, the new parameters are written (otherwise just a read
is done). If UARTEnable is true, the UART is enabled and the RX line will start buffering
any incoming bytes.

• BaudFactor16: A 16-bit value that sets the baud rate according the following formula:
BaudFactor = 2^16-3000000/(Desired Baud). For example, use a BaudFactor of 65224
to get a baud rate of 9615 bps (compatible with 9600 bps).

 123

5.3.18 AsynchTX
Control command sends bytes to the UE9 UART which will be sent asynchronously on the PIN2
(TX0) pin on the DB37 connector.

Command:

Byte
0 Checksum8
1 0xF8
2 1 + NumAsynchWords
3 0x15
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 NumAsynchBytesToSend
8 AsynchByte0
… …

• NumAsynchWords: This is the number of asynch data bytes divided by 2. If the number

• nt (0-246).
RX buffer.

Response:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x15
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumAsynchBytesSent
8 NumAsynchBytesInRXBuffer
9 0x00

of bytes is odd, round up and add an extra zero to the packet.
NumAsynchBytesToSend: Specifies how many bytes will be se

• NumAsynchBytesInRXBuffer: Returns how many bytes are currently in the

 124

5.3.19 AsynchRX
Control command reads the oldest 32 bytes from the UE9 UART RX buffer. The buffer holds
256 bytes.

• Flush: Empties the entire 256-byte RX buffer. If there is more than 32 bytes in the

• before this

• Byte#: Returns the 32 oldest bytes from the RX buffer.

Command:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x16
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 Flush

Response:

Byte
0 Checksum8
1 0xF8
2 0x11
3 0x16
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumAsynchBytesInRXBuffer
8 AsynchByte0
… …
39 AsynchByte31

buffer that data is lost.
NumAsynchBytesInRXBuffer: Returns the number of bytes in the buffer
read.
Asynch

 125

5.3.20 I2C
Control command sends and receives serial data using I2C synchronous communication.

• NumI2CWordsSend: This is the number of I2C bytes to send divided by 2. If the
number of bytes is odd, round up and add an extra zero to the packet. This parameter is

ter

• g.
• be reduced. 0 is the maximum

•
corresponding to the normal digital I/O numbers as specified in Section

2.9. Note that the screw terminals labeled SDA and SCL are not used for I2C. Note that

Response:

Byte
0 Checksum8
1 0xF8
2 4+NumI2CWordsSend
3 0x3B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 I2COptions

Bit 1: ResetAtStart
Bit 0: Reserved

7 SpeedAdjust
8 SDAPinNum
9 SCLPinNum
10 AddressByte
11 Reserved
12 NumI2CBytesToSend
13 NumI2CBytesToReceive
14 I2CByte0
… …

Byte
0 Checksum8
1 0xF8
2 3+NumI2CWordsReceive
3 0x3B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 AckArray0
9 AckArray1
10 AckArray2
11 AckArray3
12 I2CByte0
… …

actually just to specify the size of this packet, as the NumI2CbytesToSend parame
below actually specifies how many bytes will be sent.
I2COptions: If ResetAtStart is true, an I2C bus reset will be done before communicatin
SpeedAdjust: Allows the communication frequency to
speed of about 150 kHz. 20 is a speed of about 70 kHz. 255 is the minimum speed of
about 10 kHz.
SDAP/SCLP -PinNum: Assigns which digital I/O line is used for each I2C line. Value
passed is 0-22

 126

the I2C bus generally requires pull-up resistors of perhaps 4.7 kΩ from SDA to Vs and
SCL to Vs.
Address: This is the first byte of data sent on the I2C bus. The upper 7 bits are the
address of the slave chip and bit 0 is the read/write bit. Note that the read/write bit is
controlled au

•

tomatically by the LabJack, and thus bit 0 is ignored.

•
• ponse, these are the

. If the

 parameter is actually just to specify the size of this packet, as the

• rite
cation.

,

• NumI2CBytesToSend: Specifies how many I2C bytes will be sent (0-240).
NumI2CBytesToReceive: Specifies how many I2C bytes will be read (0-240).
I2Cbyte#: In the command, these are the bytes to send. In the res
bytes read.

• NumI2CWordsReceive: This is the number of I2C bytes to receive divided by 2
number of bytes is odd, the value is rounded up and an extra zero is added to the
packet. This
NumI2CbytesToReceive parameter above actually specifies how many bytes to read.
AckArray#: Represents a 32-bit value where bits are set if the corresponding I2C w
byte was ack’ed. Useful for debugging up to the first 32 write bytes of communi
Bit 0 corresponds to the last data byte, bit 1 corresponds to the second to last data byte
and so on up to the address byte. So if n is the number of data bytes, the ACKs value
should be (2^(n+1))-1.

 127

5.3.21 SHT1X
Control command reads temperature and humidity from a Sensirion SHT1X sensor (which is
used by the EI-1050). For more information, see the EI-1050 datasheet from labjack.com, and
the SHT1X datasheet from sensirion.com.

• Data/Clock -PinNum: Assigns which digital I/O line is used for each SPI line. Value
passed is 0-7 corresponding to FIO0-FIO7.

• rature reading.

Command:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x39
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 DataPinNum (0-22)
7 ClockPinNum (0-22)
8 Reserved
9 Reserved

Response:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x39
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00
8 StatusReg
9 StatusRegCRC

10-11 Temperature
12 TemperatureCRC

13-14 Humidity
15 HumidityCRC

• StatusReg: Returns a read of the SHT1X status register.
Temperature: Returns the raw binary tempe

• Humidity: Returns the raw binary humidity reading.
• #CRC: Returns the CRC values from the sensor.

 128

5.4 Low-Level Errorcodes
Following is a list of the low-level function errorcodes.

Code
1 SCRATCH_WRT_FAIL
2 SCRATCH_ERASE_FAIL
3 DATA_BUFFER_OVERFLOW
4 ADC0_BUFFER_OVERFLOW
5 FUNCTION_INVALID
6 SWDT_TIME_INVALID
16 FLASH_WRITE_FAIL
17 FLASH_ERASE_FAIL
18 FLASH_JMP_FAIL
19 FLASH_PSP_TIMEOUT
20 FLASH_ABORT_RECEIVED
21 FLASH_PAGE_MISMATCH
22 FLASH_BLOCK_MISMATCH
23 FLASH_PAGE_NOT_IN_CODE_AREA
24 MEM_ILLEGAL_ADDRESS
25 FLASH_LOCKED
26 INVALID_BLOCK
27 FLASH_ILLEGAL_PAGE
48 STREAM_IS_ACTIVE
49 STREAM_TABLE_INVALID
50 STREAM_CONFIG_INVALID
51 STREAM_BAD_TRIGGER_SOURCE
52 STREAM_NOT_RUNNING
53 STREAM_INVALID_TRIGGER
54 STREAM_CONTROL_BUFFER_OVERFLOW
55 STREAM_SCAN_OVERLAP
56 STREAM_SAMPLE_NUM_INVALID
57 STREAM_BIPOLAR_GAIN_INVALID
58 STREAM_SCAN_RATE_INVALID
64 TIMER_INVALID_MODE
65 TIMER_QUADRATURE_AB_ERROR
66 TIMER_QUAD_PULSE_SEQUENCE
67 TIMER_BAD_CLOCK_SOURCE
68 TIMER_STREAM_ACTIVE
69 TIMER_PWMSTOP_MODULE_ERROR
80 EXT_OSC_NOT_STABLE
81 INVALID_POWER_SETTING
82 PLL_NOT_LOCKED

 129

5.5 Modbus
Modbus is an industry standard command/response protocol for data acquisition and control
equipment. Go to http://en.wikipedia.org/wiki/Modbus for general information.

The UE9 supports Modbus/TCP in hardware, so any software that supports Modbus/TCP can
talk to the UE9 with no further software/drivers required. Not all functionality (e.g. streaming) is
supported over Modbus. See the following web page for more information:

http://www.labjack.com/wiki/UE9_Modbus_Support

 130

http://en.wikipedia.org/wiki/Modbus
http://www.labjack.com/wiki/UE9_Modbus_Support

A. Specifications
Specifications at 25 degrees C and Vusb/Vext = 5.0V, except where noted.

Parameter Conditions Min Typical Max Units
General
USB Cable Length 5 meters
Ethernet Cable Length (1) 100 meters
Supply Voltage 3.6 5 5.3 volts
Typical Supply Current (2)

Control Low 85 105 mA
Control High 125 160 mA

Operating Temperature -40 85 °C
Clock Error ~ 25 °C ±30 ppm

-10 to 60 °C ±50 ppm
-40 to 85 °C ±100 ppm

Typ. Command Execution Time (3) Ethernet 1.2 ms
USB high-high 1.4 ms

USB other 4 ms
Vs Outputs
Typical Voltage, USB (4) Self-Powered 4.5 5.0 5.25 volts
Typical Voltage, Wall-Wart 4.75 5.0 5.25 volts
Maximum Current (5) 200 mA
Vm+/Vm- Outputs
Typical Voltage No-load ±5.8 volts

@ 1 mA ±5.6 volts
Maximum Current 1 mA

(1) Expected max Ethernet cable length is at least 100 meters by design, but we have only tested 33 meter cables. Customer
feedback on longer cables is welcome.

(2) Typical current drawn by the UE9 itself, not including any user connections. Minimum value is the typical current when the
device is idle. Maximum value is the typical current when the device is very busy.

(4) Self-powered would apply to USB hubs with a power supply, all known desktop computer USB hosts, and some notebook
computer USB hosts.

(5) This is the maximum current that should be sourced through the UE9 and out of the Vs terminals. The UE9 has internal
overcurrent protection that will turn the UE9 off, if the total current draw exceeds ~490 mA.

(3) Total typical time to execute a single Feedback function with no analog inputs. Measured by timing a Windows application that
performs 1000 calls to the Feedback function. See Section 3.1 for more timing information.

 131

Parameter Conditions Min Typical Max Units
Analog Inputs
Unipolar Input Range (1) AINx to GND 0 5/G volts
Bipolar Input Range (1) AINx to GND -5 5 volts
Maximum AIN Voltage (2) AINx to GND -15 15 volts
Input Bias Current (3) @ 1 volt -15 nA
Input Impedance (3) >10 MΩ
Source Impedance (4) 10 kΩ
Temperature Drift G=1 10 ppm/°C
Absolute Accuracy Res 12-17 ±0.025 ±0.05 % FS

UE9-Pro, Res=18 ±0.005 ±0.01 % FS
Peak-to-Peak Noise See Appendix B
Integral Linearity Error G=1 ±0.02 % FS

G=8 ±0.03 % FS
UE9-Pro, Res=18 ±0.0001 % FS

Differential Linearity Error 12-bit ±1 counts
16-bit ±4 counts

UE9-Pro, Res=18 ±1 counts
Stream Data Buffer Size 182361 samples
C/R Acquisition Time See Section 3.1 1.2 125 ms
Stream Speed (5) 12-bit stream up to 80k samples/s

13-bit stream 16000 samples/s
14-bit stream 4000 samples/s
15-bit stream 1000 samples/s
16-bit stream 250 samples/s

Channel-to-Channel Delay (6) 12-bit stream 12 μs
13-bit stream 44 μs
14-bit stream 158 μs
15-bit stream 670 μs
16-bit stream 2700 μs

(5) Divide by the number of channels to determine the maximum scan rate. Assumes an Ethernet or USB high-high
connection. Other USB connections might not be able to maintain 50 ksamples/s. See Section 3.2 for more information.
(6) When scanning more than 1 channel in a stream, this is the time between each sample within a scan.

(1) For actual nominal input ranges see Section 2.7 of the UE9 User's Guide.

(2) Maximum voltage to avoid damage to the device. Protection level is the same whether the device is powered or not.
When the voltage on any analog input exceeds 6.0 volts, all other analog inputs are also affected, until the overvoltage is
removed. At 6.5 volts, there is a ~1 mV offset noticed on other channels, increasing to a ~5 mV offset at 15.0 volts.

(3) This is the steady state input bias current and impedance. When the analog input multiplexer changes from one channel
to another at a different voltage, more current is briefly required to change the charge on the input amplifier. The steady state
input bias current is very flat across the common mode voltage range, except for voltages of about 4.5 or higher where the
bias current shifts to typically +250 nA.

(4) To meet specifications, the impedance of the source signal should be kept at or below the specified value. With a higher
source impedance, noticable static errors can occur due to the bias current flowing through the source impedance. There are
also dynamic errors that can become noticable as the source impedance can degrade the ability of the internal multiplexer to
settle quickly when changing between channels with different voltages.

 132

Parameter Conditions Min Typical Max Units
Analog Outputs
Nominal Output Range (1) No Load 0.02 4.86 volts

@ ±2.5 mA 0.225 4.775 volts
Resolution 12 bits
Absolute Accuracy (2) 5% to 95% FS ±0.1 % FS
Integral Linearity Error ±2 counts
Differential Linearity Error ±1 counts
Error Due To Loading @ 100 μA 0.1 %

@ 1 mA 1 %
Source Impedance 50 Ω
Short Circuit Current Max to GND 100 mA
Slew Rate 0.8 V/μs
Digital I/O
Low Level Input Voltage -0.3 1.0 volts
High Level Input Voltage 2.3 Vs + 0.3 volts
Maximum Input Voltage (3) FIO -10 10 volts

EIO/CIO/MIO -6 6 volts
Input Leakage Current 10 μA
Output Low Voltage (4) No Load 0 volts
 FIO Sinking 1 mA 0.55 volts
 EIO/CIO/MIO Sinking 1 mA 0.18 volts
 EIO/CIO/MIO Sinking 5 mA 0.9 volts
Output High Voltage (4) No Load 3.3 volts
 FIO Sourcing 1 mA 2.75 volts
 EIO/CIO/MIO Sourcing 1 mA 3.12 volts
 EIO/CIO/MIO Sourcing 5 mA 2.4 volts
Short Circuit Current (4) FIO 6 mA

EIO/CIO/MIO 18 mA
Output Impedance (4) FIO 550 Ω

EIO/CIO/MIO 180 Ω
Counter Input Frequency (5) Control High 3 MHz

Control Low 1 MHz
Input Timer Total Edge Rate (6) No Stream 100000 edges/s

While Streaming 25000 edges/s

(5) Hardware counters. 0 to 3.3 volt square wave. Default power level is "High".

(1) Maximum and minimum analog output voltage is limited by the supply voltages (Vs and GND). The specifications assume Vs
is 5.0 volts. Also, the ability of the DAC output buffer to drive voltages close to the power rails, decreases with increasing output
current, but in most applications the output is not sinking/sourcing much current as the output voltage approaches GND.
(2) Analog output accuracy is specified from 5% to 95% of full-scale output.

(3) Maximum voltage to avoid damage to the device. Protection works whether the device is powered or not, but continuous
voltages over 5.8 volts or less than -0.3 volts are not recommened when the UE9 is unpowered, as the voltage will attempt to supply
operating power to the UE9 possibly causing poor start-up behavior.

(6) To avoid missing edges, keep the total number of applicable edges on all applicable timers below this limit. See Section 2.10
for more information.

(4) These specifications provide the answer to the common question: "How much current can the digital I/O sink or source?". For
instance, if EIO0 configured as output-high and shorted to ground, the current sourced by EIO0 into ground will be about 18 mA
(3.3/180). If connected to a load that draws 5 mA, EIO0 can provide that current but the voltage will droop to about 2.4 volts
instead of the nominal 3.3 volts. If connected to a 180 ohm load to ground, the resulting voltage and current will be about 1.65 volts
@ 9 mA.

 133

B. Noise & Resolution Tables
The following tables provide typical noise levels of the UE9 under ideal conditions. The
resulting voltage resolution is then calculated based on the noise levels. Also see the LJTick-
InAmp datasheet which provides similar tables with the instrumentation amplifier installed.

Measurements were taken with AIN0 connected to GND with a short jumper wire, or from
internal ground channel #15. Similar results were obtained with other quiet signals such as a
2.048 reference (REF191 from Analog Devices), a 1.5 volt D-cell battery, and a temperature
sensor (LM34CAZ from National Semiconductor).

All "counts" data are aligned as 24-bit values. To equate to counts at a particular resolution
(Res) use the formula counts/(2^(24-Res)). For instance, with the UE9 set to 12-bit resolution
and the 0-5 volt range, there are 8192 counts of noise when looking at 24-bit values. To equate
this to 12-bit data, we take 8192/(2^12) which equals 2 counts of noise when looking at 12-bit
values.

Noise-free data is determined by taking 128 readings and subtracting the minimum value from
the maximum value.

RMS and Effective data are determined from the standard deviation of 128 readings. In other
words, the RMS data represents most readings, whereas noise-free data represents all
readings.

Resolution = 0-12
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts counts bits volts counts bits volts
±5 8192 11.0 0.004883 2200 12.8 0.001402
0-5 8192 11.0 0.002441 2200 12.8 0.000701

0-2.5 20480 9.7 0.003006 4100 12.0 0.000610
0-1.25 36864 8.8 0.002804 7800 11.1 0.000569
0-0.63 69632 7.9 0.002638 14500 10.1 0.000574

Resolution = 14
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts counts bits volts counts bits volts
±5 2816 12.5 0.001726 550 14.9 0.000327
0-5 2816 12.5 0.000863 550 14.9 0.000164

0-2.5 4864 11.8 0.000701 940 14.1 0.000142
0-1.25 8448 11.0 0.000610 1650 13.3 0.000124
0-0.63 16384 10.0 0.000615 3300 12.3 0.000125

 134

Resolution = 16
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts counts bits volts counts bits volts
±5 720 14.5 0.000432 140 16.9 0.000082
0-5 720 14.5 0.000216 140 16.9 0.000041

0-2.5 1200 13.8 0.000175 230 16.2 0.000033
0-1.25 2224 12.9 0.000164 400 15.4 0.000029
0-0.63 4256 11.9 0.000165 775 14.4 0.000029

Resolution = 17
Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective

Range Noise Resolution Resolution Noise Resolution Resolution
volts counts bits volts counts bits volts
±5 352 15.5 0.000216 75 17.8 0.000044
0-5 352 15.5 0.000108 75 17.8 0.000022

0-2.5 620 14.7 0.000094 120 17.1 0.000018
0-1.25 1060 14.0 0.000076 210 16.3 0.000015
0-0.63 2068 13.0 0.000077 400 15.4 0.000015

Peak-To-Peak Noise-Free Noise-Free RMS Effective Effective
Range Noise Resolution Resolution Noise Resolution Resolution
volts counts bits volts counts bits volts
±5 110 17.2 0.000066 20 19.7 0.000012
0-5 90 17.5 0.000027 17 19.9 0.000005

Resolution = 18+ (UE9-Pro)

 135

C. Enclosure & PCB Drawings
The UE9 enclosure base has a pair of slotted holes towards the communication end (left in
below drawing), and another pair of mounting holes at the opposite end (right in below drawing).

The square holes shown below are for DIN rail mounting adapters: Tyco part #TKAD.

Units are inches.

 136

 137

 138

	Declaration of Conformity
	1. Installation on Windows
	1.1 Control Panel Application (LJControlPanel)
	1.2 Self-Upgrade Application (LJSelfUpgrade)

	2. Hardware Description
	2.1 USB
	2.2 Ethernet
	2.3 Vext (Screw Terminals and Power Jack)
	2.4 Comm and Control LEDs
	2.5 GND and SGND
	2.6 Vs
	2.7 AIN
	2.7.1 Channel Numbers
	2.7.2 Converting Binary Readings to Voltages
	2.7.3 Typical Analog Input Connections
	2.7.3.1 Signal from the LabJack
	2.7.3.2 Unpowered isolated signal
	2.7.3.3 Signal powered by the LabJack
	2.7.3.4 Signal powered externally
	2.7.3.5 Amplifying small signal voltages
	2.7.3.6 Signal voltages beyond ±5 volts (and resistance measurement)
	2.7.3.7 Measuring current (including 4-20 mA) with a resistive shunt
	2.7.3.8 Floating/Unconnected Inputs

	2.7.4 Internal Temperature Sensor

	2.8 DAC
	2.8.1 Typical Analog Output Connections
	2.8.1.1 High Current Output
	2.8.1.2 Different Output Ranges

	2.9 Digital I/O
	2.9.1 Typical Digital I/O Connections
	2.9.1.1 Input: Driven Signals
	2.9.1.2 Input: Open-Collector Signals
	2.9.1.3 Input: Mechanical Switch Closure
	2.9.1.4 Output: Controlling Relays

	2.10 Timers/Counters
	2.10.1 Timer Mode Descriptions
	2.10.1.1 PWM Output (16-Bit, Mode 0)
	2.10.1.2 PWM Output (8-Bit, Mode 1)
	2.10.1.3 Period Measurement (32-Bit, Modes 2 & 3)
	2.10.1.4 Duty Cycle Measurement (Mode 4)
	2.10.1.5 Firmware Counter Input (Mode 5)
	2.10.1.6 Firmware Counter Input With Debounce (Mode 6)
	2.10.1.7 Frequency Output (Mode 7)
	2.10.1.8 Quadrature Input (Mode 8)
	2.10.1.9 Timer Stop Input (Mode 9)
	2.10.1.10 System Timer Low/High Read (Modes 10 & 11)
	2.10.1.11 Period Measurement (16-Bit, Modes 12 & 13)

	2.10.2 Timer Operation/Performance Notes

	2.11 SCL and SDA (or SCA)
	2.12 DB37
	2.12.1 CB37 Terminal Board
	2.12.2 EB37 Experiment Board

	2.13 DB15
	2.13.1 CB15 Terminal Board
	2.13.2 RB12 Relay Board

	2.14 OEM Connector Options

	3. Operation
	3.1 Command/Response
	3.2 Stream Mode
	3.2.1 External Triggering
	3.2.2 Streaming Digital Inputs, Timers, and Counter0

	4. LabJackUD High-Level Driver
	4.1 Overview
	4.1.1 Function Flexibility
	4.1.2 Multi-Threaded Operation

	 4.2 Function Reference
	4.2.1 ListAll()
	4.2.2 OpenLabJack()
	4.2.3 eGet() and ePut()
	4.2.4 eAddGoGet()
	4.2.5 AddRequest()
	4.2.6 Go()
	4.2.7 GoOne()
	4.2.8 GetResult()
	4.2.9 GetFirstResult() and GetNextResult()
	4.2.10 DoubleToStringAddress()
	4.2.11 StringToDoubleAddress()
	4.2.12 StringToConstant()
	4.2.13 ErrorToString()
	4.2.14 GetDriverVersion()
	4.2.15 TCVoltsToTemp()
	4.2.16 ResetLabJack()
	4.2.17 eAIN()
	4.2.18 eDAC()
	4.2.19 eDI()
	4.2.20 eDO()
	4.2.21 eTCConfig()
	4.2.22 eTCValues()

	 4.3 Example Pseudocode
	4.3.1 Open
	4.3.2 Configuration
	4.3.3 Analog Inputs
	4.3.4 Analog Outputs
	4.3.5 Digital I/O
	4.3.6 Timers & Counters
	4.3.7 Stream Mode
	4.3.8 Raw Output/Input
	4.3.9 Easy Functions
	4.3.10 SPI Serial Communication
	4.3.11 I2C Serial Communication
	4.3.12 Asynchronous Serial Communication
	4.3.13 Watchdog Timer
	4.3.13 Miscellaneous

	 4.4 Errorcodes

	5. Low-Level Function Reference
	5.1 General Protocol
	 5.2 Comm Functions
	5.2.1 CommConfig
	 5.2.2 FlushBuffer
	 5.2.3 DiscoveryUDP

	 5.3 Control Functions
	5.3.1 BadChecksum
	 5.3.2 ControlConfig
	 5.3.3 Feedback (and FeedbackAlt)
	 5.3.4 SingleIO
	 5.3.5 TimerCounter
	 5.3.6 StreamConfig
	 5.3.7 StreamStart
	 5.3.8 StreamData
	 5.3.9 StreamStop
	 5.3.10 ReadMem
	 5.3.11 WriteMem
	 5.3.12 EraseMem
	 5.3.13 WatchdogConfig
	5.3.14 WatchdogRead
	 5.3.15 Reset
	 5.3.16 SPI
	 5.3.17 AsynchConfig
	 5.3.18 AsynchTX
	 5.3.19 AsynchRX
	 5.3.20 I2C
	 5.3.21 SHT1X

	 5.4 Low-Level Errorcodes
	 5.5 Modbus

	A. Specifications
	 B. Noise & Resolution Tables
	 C. Enclosure & PCB Drawings

